安徽省定远中学2024年高三下学期一模考试数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知某几何体的三视图如图所示,则该几何体的体积是()A.B.64C.D.322.已知中内角所对应的边依次为,若,则的面积为()A.B.C.D.3.设是等差数列,且公差不为零,其前项和为.则“,”是“为递增数列”的(上的动点,)B.必要而不充分条件A.充分而不必要条件D.既不充分也不必要条件C.充分必要条件4.已知抛物线上一点到焦点的距离为,分别为抛物线与圆则的最小值为()A.B.C.D.5.是虚数单位,复数在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限6.已知焦点为的抛物线的准线与轴交于点,点在抛物线上,则当取得最大值时,直或线的方程为()A.或B.或C.D.7.已知集合,,,则()A.8.已知双曲线B.C.D.()的渐近线方程为,则()A.B.C.D.9.已知向量,则()A.∥B.⊥C.∥()D.⊥()10.已知满足,则()A.B.C.D.11.如图,正三棱柱各条棱的长度均相等,为的中点,分别是线段和线段的动点(含端点),且满足,当运动时,下列结论中不正确的是A.在内总存在与平面平行的线段B.平面平面C.三棱锥的体积为定值D.可能为直角三角形12.已知定义在上的函数在区间上单调递增,且的图象关于对称,若实数满足,则的取值范围是()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.设为数列的前项和,若,,且,,则________.14.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了”.丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是__________.15.已知抛物线的焦点为,其准线与坐标轴交于点,过的直线与抛物线交于两点,若,则直线的斜率________.16.已知函数,若关于的方程在定义域上有四个不同的解,则实数的取值范围是_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在国家“大众创业,万众创新”战略下,某企业决定加大对某种产品的研发投入.为了对新研发的产品进行合理定价,将该产品按事先拟定的价格试销,得到一组检测数据如表所示:试销价格(元)产品销量(件)已知变量且有线性负相关关系,现有甲、乙、丙三位同学通过计算求得回归直线方程分别为:甲;乙;丙,其中有且仅有一位同学的计算结果是正确的.(1)试判断谁的计算结果正确?(2)若由线性回归方程得到的估计数据与检测数据的误差不超过,则称该检测数据是“理想数据”,现从检测数据中随机抽取个,求“理想数据”的个数的分布列和数学期望.18.(12分)已知函数.(Ⅰ)求在点处的切线方程;(Ⅱ)求证:在上存在唯一的极大值;(Ⅲ)直接写出函数在上的零点个数.19.(12分)已知函数,.(1)求函数的极值;(2)当时,求证:.20.(12分)如图,已知平面与直线均垂直于所在平面,且.(1)求证:平面;所成角的正弦值.(2)若,求与平面21.(12分)设为坐标原点,动点在椭圆:上,该椭圆的左顶点到直线的距离为.(1)求椭圆的标准方程;,动点在直线上,满足(2)若椭圆外一点满足,平行于轴,.设过点且垂直的直线,试问直线是否过定点?若过定点,请写出该定点,若不过定点请说明理由.22.(10分)已知命题:,;命题:函数无零点.(1)若为假,求实数的取值范围;(2)若为假,为真,求实数的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据三视图,还原空间几何体,即可得该几何体的体积.【详解】由该几何体的三视图,还原空...