电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

安徽省宣城市八校2024届高考数学五模试卷含解析.doc

安徽省宣城市八校2024届高考数学五模试卷含解析.doc_第1页
1/30
安徽省宣城市八校2024届高考数学五模试卷含解析.doc_第2页
2/30
安徽省宣城市八校2024届高考数学五模试卷含解析.doc_第3页
3/30
安徽省宣城市八校2024届高考数学五模试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.过抛物线的焦点F作两条互相垂直的弦AB,CD,设P为抛物线上的一动点,,若,则的最小值是()A.1B.2C.3D.42.已知向量,则向量在向量方向上的投影为()A.B.C.D.3.如图,在棱长为4的正方体中,E,F,G分别为棱AB,BC,的中点,M为棱AD的中点,设P,Q为底面ABCD内的两个动点,满足平面EFG,,则的最小值为()A.B.C.D.4.设,则关于的方程所表示的曲线是()B.长轴在轴上的椭圆A.长轴在轴上的椭圆C.实轴在轴上的双曲线D.实轴在轴上的双曲线5.函数的大致图象为A.B.C.D.6.已知的值域为,当正数a,b满足时,则的最小值为()A.B.5C.D.97.已知函数,,若方程恰有三个不相等的实根,则的取值范围为()A.B.C.D.8.已知将函数(,)的图象向右平移个单位长度后得到函数的图象,若和的图象都关于对称,则的值为()A.2B.3C.4D.9.如图,在等腰梯形中,,,,为的中点,将的外接球的体积是()与分别沿、向上折起,使、重合为点,则三棱锥A.B.C.D.10.若复数满足(是虚数单位),则()A.B.C.D.11.已知函数,当时,的取值范围为,则实数mC.的取值范围是()A.B.D.的焦点重合,则双曲线的离心率为()12.已知双曲线的一个焦点与抛物线D.4A.B.C.3,则参数t的取值范围为_______.二、填空题:本题共4小题,每小题5分,共20分。13.若变量x,y满足:,且满足14.若点为点在平面上的正投影,则记.如图,在棱长为1的正方体中,记平.给出下列四个结论:面为,平面为,点是线段上一动点,①为的重心;②;③当时,平面;④当三棱锥的体积最大时,三棱锥外接球的表面积为.其中,所有正确结论的序号是________________.15.已知直角坐标系中起点为坐标原点的向量满足,且,,,存在,对于任意的实数,不等式,则实数的取值范围是______.16.已知多项式的各项系数之和为32,则展开式中含项的系数为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,曲线在点处的切线在y轴上的截距为.(1)求a;(2)讨论函数和的单调性;(3)设,求证:.18.(12分)已知在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为.(1)求曲线与直线的直角坐标方程;(2)若曲线与直线交于两点,求的值.19.(12分)已知,其中.(1)当时,设函数,求函数的极值.(2)若函数在区间上递增,求的取值范围;(3)证明:.20.(12分)如图,平面四边形中,,是上的一点,是的中点,以为折痕把折起,使点到达点的位置,且.(1)证明:平面平面;(2)求直线与平面所成角的正弦值.21.(12分)在直角坐标系中,曲线上的任意一点到直线的距离比点到点的距离小1.(1)求动点的轨迹的方程;(2)若点是圆上一动点,过点作曲线的两条切线,切点分别为,求直线斜率的取值范围.22.(10分)已知函数f(x)=x-1+x-2.若不等式a+b+a-b≥af(x)(a≠0,a、b∈R)恒成立,求实数x的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】设直线AB的方程为,代入得:,由根与系数的关系得,,从而...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

安徽省宣城市八校2024届高考数学五模试卷含解析.doc

您可能关注的文档

确认删除?