安徽省肥西农兴中学2024年高三第四次模拟考试数学试卷注意事项铅笔作答;第二部分必须用黑1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,,则中元素的个数为()A.3B.2C.1D.02.已知函数,若关于的方程恰好有3个不相等的实数根,则实数的取值范围为()A.B.C.D.3.设过定点的直线与椭圆:交于不同的两点,,若原点在以为直径的圆的外部,则直线的斜率的取值范围为()A.B.C.D.4.已知数列是公比为的等比数列,且,,成等差数列,则公比的值为()A.B.C.或D.或5.已知椭圆的左、右焦点分别为,,上顶点为点,延长交椭圆于点,若为等腰三角形,则椭圆的离心率A.B.C.D.6.若双曲线的离心率,则该双曲线的焦点到其渐近线的距离为()A.B.2C.D.17.三棱柱余弦值为()中,底面边长和侧棱长都相等,,则异面直线与所成角的A.B.C.D.8.若(),,则()A.0或2C.1或29.定义运算B.0D.1,则函数的图象是().A.B.C.D.10.若,,,则下列结论正确的是()A.B.C.D.中,点是平面11.如图,在底面边长为1,高为2的正四棱柱内一点,则三棱锥的正视图与侧视图的面积之和为()A.2B.3C.4D.512.函数的图像大致为().A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.已知各项均为正数的等比数列的前项积为,,(且),则__________.14.已知,,且,则最小值为__________.15.已知随机变量,且,则______16.已知单位向量的夹角为,则=_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知分别是椭圆的左焦点和右焦点,椭圆的离心率为是椭圆上两点,点满足.(1)求的方程;(2)若点在圆上,点为坐标原点,求的取值范围.,18.(12分)如图,在等腰梯形中,AD∥BC,,,,分别为,,的中点,以为折痕将折起,使点到达点位置(平面).(1)若为直线上任意一点,证明:MH∥平面;(2)若直线与直线所成角为,求二面角的余弦值.19.(12分)已知与有两个不同的交点,其横坐标分别为().(1)求实数的取值范围;(2)求证:.20.(12分)已知椭圆()的半焦距为,原点到经过两点,的直线的距离为.的一条直径,若椭圆经过,两点,求椭圆的方程.(Ⅰ)求椭圆的离心率;(Ⅱ)如图,是圆21.(12分)已知椭圆()的离心率为,且经过点.(1)求椭圆的方程;(2)过点作直线与椭圆交于不同的两点,,试问在轴上是否存在定点使得直线与直线恰关于轴对称?若存在,求出点的坐标;若不存在,说明理由.22.(10分)的内角、、所对的边长分别为、、,已知.(1)求的值;(2)若,点是线段的中点,,求的面积.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】集合表示半圆上的点,集合表示直线上的点,联立方程组求得方程组解的个数,即为交集中元素的个数.【详解】由题可知:集合表示半圆上的点,集合表示直线上的点,联立与,可得,整理得,即,当时,,不满足题意;故方程组有唯一的解.故.故选:C.【点睛】本题考查集合交集的求解,涉及圆和直线的位置关系的判断,属基础题.2、D【解析】讨论,,三种情况,求导得到单调区间,画出函数图像,根据图像得到答案.【详解】当时,,故,函数在上单调递增,在上单调递减,且;当时,;当时,,,函数单调递减;如图所示画出函数图像,则,故.故选:.【点睛】本题考查了利用导数求函数的零点问题,意在考查学生的计算能力和应用能力.3、D【解析】设直线:,,,由原点在以为直径的圆的外部,可得,联立直线与椭圆方程,结合韦达定理,即可求得答案.【详解】显然直线不满足条件,故可设直线:,,,由,得,解得或,,,,,,,解得,直线的斜率的取值范围为.故选:D.【点睛】本题解题关键是掌握椭圆的基础知识和圆锥曲线...