山东泰安知行学校2024年高考冲刺数学模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,若,则等于()A.-3B.-1C.3D.02.设i是虚数单位,若复数是纯虚数,则a的值为()A.B.3C.1D.3.曲线在点处的切线方程为()A.B.C.D.4.若复数,,其中是虚数单位,则的最大值为()A.B.C.D.5.已知数列是以1为首项,2为公差的等差数列,是以1为首项,2为公比的等比数列,设,,则当时,的最大值是()A.8B.9C.10D.116.下图是来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形的斜边、直角边,已知以直角边为直径的半圆的面积之比为,记,则()A.B.C.1D.7.已知复数,则的共轭复数在复平面对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限8.已知,,若,则实数的值是()A.-1B.7C.1D.1或79.在各项均为正数的等比数列中,若,则()A.B.6C.4D.510.已知椭圆的左、右焦点分别为、,过的直线交椭圆于A,B两点,交y轴于点M,若、M是线段AB的三等分点,则椭圆的离心率为()A.B.C.D.11.函数在区间上的大致图象如图所示,则可能是()A.B.C.D.12.关于函数在区间的单调性,下列叙述正确的是()A.单调递增B.单调递减C.先递减后递增D.先递增后递减二、填空题:本题共4小题,每小题5分,共20分。13.“”是“”的__________条件.(填写“充分必要”、“充分不必要”、“必要不充分”、“既不充分也不必要”之一),则的最小值为________.14.已知数列是各项均为正数的等比数列,若15.若函数()的图象与直线相切,则______.16.若实数满足不等式组,则的最小值是___三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数u(x)=xlnx,v(x)x﹣1,m∈R.(1)令m=2,求函数h(x)的单调区间;(2)令f(x)=u(x)﹣v(x),若函数f(x)恰有两个极值点x1,x2,且满足1e(e为自然对数的底数)求x1•x2的最大值.中,平面,点,分别在线段,上,且18.(12分)如图所示,三棱柱,,是线段的中点.(Ⅰ)求证:平面;(Ⅱ)若,,,求直线与平面所成角的正弦值.19.(12分)如图,在四边形中,,,.(1)求的长;(2)若的面积为6,求的值.20.(12分)已知数列满足,且,,成等比数列.(1)求证:数列是等差数列,并求数列的通项公式;(2)记数列的前n项和为,,求数列的前n项和.21.(12分)已知函数.(1)当a=2时,求不等式的解集;(2)设函数.当时,,求的取值范围.22.(10分)已知椭圆C:(a>b>0)的两个焦点分别为F1(-,0)、F2(,0).点M(1,0)与椭圆短轴的两个端点的连线相互垂直.(1)求椭圆C的方程;(2)已知点N的坐标为(3,2),点P的坐标为(m,n)(m≠3).过点M任作直线l与椭圆C相交于A、B两点,设直线AN、NP、BN的斜率分别为k1、k2、k3,若k1+k3=2k2,试求m,n满足的关系式.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】分析:因为题设中给出了的值,要求的值,故应考虑两者之间满足的关系.详解:由题设有,故有,所以,从而,故选D.点睛:本题考查函数的表示方法,解题时注意根据问题的条件和求解的结论之间的关系去寻找函数的解析式要满足的关系.2、D的形式,由复数为纯虚数可知实部为0,虚部不为0,即可求解.【解析】,整理复数为【详解】由题,因为纯虚数,所以,则,故选:D【点睛】本题考查已知复数的类型求参数范围,考查复数的除法运算.3、A【解析】将点代入解析式确定参数值,...