山东省威海市示范名校2023-2024学年高三第二次调研数学试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知等差数列的前项和为,若,则等差数列公差()A.2B.C.3D.42.已知集合,集合,那么等于()A.B.C.D.3.某几何体的三视图如图所示,其俯视图是由一个半圆与其直径组成的图形,则此几何体的体积是()A.B.C.D.4.若是定义域为的奇函数,且,则A.的值域为B.为周期函数,且6为其一个周期C.的图像关于对称D.函数的零点有无穷多个5.设m,n为直线,、为平面,则的一个充分条件可以是()A.,,B.,C.,D.,6.若将函数的图象上各点横坐标缩短到原来的(纵坐标不变)得到函数的图象,则下列说法正确的是()A.函数在上单调递增B.函数的周期是C.函数的图象关于点对称D.函数在上最大值是17.已知定义在上的函数,若函数为偶函数,且对任意,,都有,若,则实数的取值范围是()A.B.C.D.8.已知数列是公比为的等比数列,且,,成等差数列,则公比的值为()A.B.C.或D.或9.记为数列的前项和数列对任意的满足.若,则当取最小值时,等于()B.7C.8D.9A.610.已知双曲线:的焦点为,,且上点满足,,,则双曲线的离心率为A.B.C.D.511.已知满足,则()A.B.C.D.12.已知双曲线(a>0,b>0)的右焦点为F,若过点F且倾斜角为60°的直线l与双曲线的右支有且只有一个交点,则此双曲线的离心率e的取值范围是()A.B.(1,2),C.D.二、填空题:本题共4小题,每小题5分,共20分。13.在中,角所对的边分别为,为的面积,若,,则的形状为__________,的大小为__________.14.函数的极大值为______.15.已知双曲线C:()的左、右焦点为,,为双曲线C上一点,且,若线段与双曲线C交于另一点A,则的面积为______.16.某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗原料1千克、原料2千克;生产乙产品1桶需耗原料2千克,原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是__________元.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,角、、的对边分别为、、,且.(1)若,,求的值;(2)若,求的值.18.(12分)已知函数,.(1)求的值;(2)令在上最小值为,证明:.19.(12分)已知函数(I)当时,解不等式.(II)若不等式恒成立,求实数的取值范围20.(12分)已知函数,直线为曲线的切线(为自然对数的底数).,若函数(1)求实数的值;(2)用表示中的最小值,设函数为增函数,求实数的取值范围.21.(12分)已知函数(1)当时,证明,在恒成立;(2)若在处取得极大值,求的取值范围.22.(10分)甲、乙两班各派三名同学参加知识竞赛,每人回答一个问题,答对得10分,答错得0分,假设甲班三名同学答对的概率都是,乙班三名同学答对的概率分别是,,,且这六名同学答题正确与否相互之间没有影响.(1)记“甲、乙两班总得分之和是60分”为事件,求事件发生的概率;(2)用表示甲班总得分,求随机变量的概率分布和数学期望.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据等差数列的求和公式即可得出.【详解】 a1=12,S5=90,∴5×12+d=90,解得d=1.故选C.【点睛】本题主要考查了等差数列的求和公式,考查了推理能力与计算能力,属于中档题.2、A【解析】求出集合,然后进行并集的运算即可.【详解】 ,,∴.故选:A.【点睛】本小题主要考查一元二次不等式的解法,考查集合并集的概念和运算,属于基础题.3、C【解析】由三视图可知,该几何体是下部是半径为2,高...