山东省枣庄市现代实验学校2024年高三冲刺模拟数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,在圆锥SO中,AB,CD为底面圆的两条直径,AB∩CD=O,且AB⊥CD,SO=OB=3,SE.,异面直线SC与OE所成角的正切值为()A.B.C.D.2.双曲线C:(,)的离心率是3,焦点到渐近线的距离为,则双曲线C的焦距为()A.3B.C.6D.3.若集合,,则()A.B.C.D.4.设等差数列的前项和为,若,则()A.23B.25C.28D.295.已知等差数列中,则()A.10B.16C.20D.246.2019年10月17日是我国第6个“扶贫日”,某医院开展扶贫日“送医下乡”医疗义诊活动,现有五名医生被分配到四所不同的乡镇医院中,医生甲被指定分配到医院,医生乙只能分配到医院或医院,医生丙不能分配到医生甲、乙所在的医院,其他两名医生分配到哪所医院都可以,若每所医院至少分配一名医生,则不同的分配方案共有()A.18种B.20种C.22种D.24种7.设双曲线(a>0,b>0)的右焦点为F,右顶点为A,过F作AF的垂线与双曲线交于B,C两点,过B,C分别作AC,AB的垂线交于点D.若D到直线BC的距离小于,则该双曲线的渐近线斜率的取值范围是()A.B.C.D.8.已知定义在上的函数,若函数为偶函数,且对任意,,都有,若,则实数的取值范围是()A.B.C.D.9.设复数满足,则在复平面内的对应点位于()A.第一象限B.第二象限C.第三象限D.第四象限10.盒中有6个小球,其中4个白球,2个黑球,从中任取个球,在取出的球中,黑球放回,白球则涂黑后放回,此时盒中黑球的个数,则()A.,B.,C.,D.,11.函数的部分图象大致是()A.B.C.D.12.已知集合,则等于()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.如图是九位评委打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均分为_______.14.已知不等式组所表示的平面区域为,则区域的外接圆的面积为______.15.已知是定义在上的奇函数,当时,,则不等式的解集用区间表示为__________.16.某种牛肉干每袋的质量服从正态分布,质检部门的检测数据显示:该正态分布为,.某旅游团游客共购买这种牛肉干100袋,估计其中质量低于的袋数大约是_____袋.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在如图所示的几何体中,面CDEF为正方形,平面ABCD为等腰梯形,AB//CD,AB=2BC,点Q为AE的中点.(1)求证:AC//平面DQF;(2)若∠ABC=60°,AC⊥FB,求BC与平面DQF所成角的正弦值.18.(12分)已知数列满足,,数列满足.(Ⅰ)求证数列是等比数列;(Ⅱ)求数列的前项和.19.(12分)已知函数.(1)若关于的不等式的整数解有且仅有一个值,当时,求不等式的解集;(2)已知,若,使得成立,求实数的取值范围.20.(12分)已知圆上有一动点,点的坐标为,四边形为平行四边形,线段的垂直平分线交于点.两点,点的坐标为,直线与轴分别交于两点,(Ⅰ)求点的轨迹的方程;(Ⅱ)过点作直线与曲线交于求证:线段的中点为定点,并求出面积的最大值.21.(12分)设函数.(1)当时,求不等式的解集;(2)若不等式恒成立,求实数a的取值范围.22.(10分)如图,设椭圆:,长轴的右端点与抛物线:的焦点重合,且椭圆的离心率是.(Ⅰ)求椭圆的标准方程;面积的(Ⅱ)过作直线交抛物线于,两点,过且与直线垂直的直线交椭圆于另一点,求最小值,以及取到最小值时直线的方程.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】可过点S作SF∥OE,交AB于点F,并连接CF,从而可得出∠CSF...