山东省泰安市第一中学2023-2024学年高三3月份模拟考试数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设为等差数列的前项和,若,,则的最小值为()A.B.C.D.2.下列函数中,值域为R且为奇函数的是()A.B.C.D.3.三棱柱中,底面边长和侧棱长都相等,,则异面直线与所成角的余弦值为()A.B.C.D.4.当输入的实数时,执行如图所示的程序框图,则输出的不小于103的概率是()A.B.C.D.5.已知一个三棱锥的三视图如图所示,其中三视图的长、宽、高分别为,,,且,则此三棱锥外接球表面积的最小值为()A.B.C.D.6.如图,在平面四边形中,满足,且,沿着把折起,使点到达点的位置,且使,则三棱锥体积的最大值为()A.12B.C.D.7.若复数z满足,则复数z在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限8.甲乙两人有三个不同的学习小组,,可以参加,若每人必须参加并且仅能参加一个学习小组,则两人参加同一个小组的概率为()A.B.C.D.9.设数列是等差数列,,.则这个数列的前7项和等于()A.12B.21C.24D.3610.tan570°=()A.B.-C.D.11.已知函数,若关于的方程恰好有3个不相等的实数根,则实数的取值范D.围为()A.B.C.12.如图,棱长为的正方体中,为线段的中点,分别为线段和棱上任意一点,则的最小值为()A.B.C.D.,则________.二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线的一条渐近线方程为14.如图,的外接圆半径为,为边上一点,且,,则的面积为______.15.在平面直角坐标系中,点P在直线上,过点P作圆C:的一条切线,切点为T.若,则的长是______.16.在的展开式中,各项系数之和为,则展开式中的常数项为__________________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,平面分别是上的动点,且.(1)若平面与平面的交线为,求证:;(2)当平面平面平面所成的二面角的余弦值.时,求平面与18.(12分)已知函数,.(1)求函数的极值;(2)当时,求证:.19.(12分)已知椭圆C:(a>b>0)过点(0,),且满足a+b=3.(1)求椭圆C的方程;(2)若斜率为的直线与椭圆C交于两个不同点A,B,点M坐标为(2,1),设直线MA与MB的斜率分别为k1,k2,试问k1+k2是否为定值?并说明理由.20.(12分)已知的内角,,的对边分别为,,,.(1)若,证明:.(2)若,,求的面积.21.(12分)高铁和航空的飞速发展不仅方便了人们的出行,更带动了我国经济的巨大发展.据统计,在2018年这一年内从市到市乘坐高铁或飞机出行的成年人约为万人次.为了解乘客出行的满意度,现从中随机抽取人次作为样本,得到下表(单位:人次):满意度老年人中年人青年人乘坐高铁乘坐高铁乘坐高铁乘坐飞机乘坐飞机乘坐飞机10分(满意)1212022015分(一般)2362490分(不满意)106344(1)在样本中任取个,求这个出行人恰好不是青年人的概率;(2)在2018年从市到市乘坐高铁的所有成年人中,随机选取人次,记其中老年人出行的人次为.以频率作为概率,求的分布列和数学期望;(3)如果甲将要从市出发到市,那么根据表格中的数据,你建议甲是乘坐高铁还是飞机?并说明理由.22.(10分)(选修4-4:坐标系与参数方程)在平面直角坐标系,已知曲线(为参数),在以原点为极点,轴的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为.(1)求曲线的普通方程和直线的直角坐标方程;(2)过点且与直线平行的直线交于,两点,求点到,的距离之积.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据已知条件求得等差数列的通项公式,判断出最小时的值...