山东省济南市山东师范大学附中2023-2024学年高考数学必刷试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,则方程的实数根的个数是()A.B.C.D.2.已知空间两不同直线、,两不同平面,,下列命题正确的是()A.若且,则B.若且,则C.若且,则D.若不垂直于,且,则不垂直于3.若函数的定义域为M={x-2≤x≤2},值域为N={y0≤y≤2},则函数的图像可能是()A.B.C.D.4.已知分别为圆与的直径,则的取值范围为()A.B.C.D.5.执行如图的程序框图,若输出的结果,则输入的值为()A.B.C.3或D.或6.已知集合,则全集则下列结论正确的是()A.B.C.D.7.已知定义在R上的函数(m为实数)为偶函数,记,,则a,b,c的大小关系为()A.B.C.D.8.设复数满足,则()A.1B.-1C.D.9.已知复数,则的虚部为()A.B.C.D.110.若函数f(x)=a2x-4(a>0,a≠1)满足f(1)=,则f(x)的单调递减区间是()A.(-∞,2]B.[2,+∞)C.[-2,+∞)D.(-∞,-2]11.若函数(其中,图象的一个对称中心为,,其相邻一条对称轴方程为,该对称轴处所对应的函数值为,为了得到的图象,则只要将的图象()A.向右平移个单位长度B.向左平移个单位长度C.向左平移个单位长度D.向右平移个单位长度12.1777年,法国科学家蒲丰在宴请客人时,在地上铺了一张白纸,上面画着一条条等距离的平行线,而他给每个客人发许多等质量的,长度等于相邻两平行线距离的一半的针,让他们随意投放.事后,蒲丰对针落地的位置进行统计,发现共投针2212枚,与直线相交的有704枚.根据这次统计数据,若客人随意向这张白纸上投放一根这样的针,则针落地后与直线相交的概率约为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,在等腰三角形中,已知,,分别是边上的点,且,其中且,若线段的中点分别为,则的最小值是_____.14.若x,y满足,且y≥−1,则3x+y的最大值_____15.设函数,当时,记最大值为,则的最小值为______.16.过动点作圆:的切线,其中为切点,若(为坐标原点),则的最小值是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某调查机构为了了解某产品年产量x(吨)对价格y(千克/吨)和利润z的影响,对近五年该产品的年产量和价格统计如下表:x12345y17.016.515.513.812.2(1)求y关于x的线性回归方程;(2)若每吨该产品的成本为12千元,假设该产品可全部卖出,预测当年产量为多少时,年利润w取到最大值?参考公式:18.(12分)在平面直角坐标系中,已知椭圆的左顶点为,右焦点为,为椭圆上两点,圆.(1)若轴,且满足直线与圆相切,求圆的方程;(2)若圆的半径为,点满足,求直线被圆截得弦长的最大值.19.(12分)选修4-5:不等式选讲设函数.(1)证明:;(2)若不等式的解集非空,求的取值范围.20.(12分)如图,四棱锥的底面为直角梯形,,,,底面,且,为的中点.(1)证明:;(2)设点是线段上的动点,当直线与直线所成的角最小时,求三棱锥的体积.21.(12分)已知在中,角的对边分别为,且.(1)求的值;,求的取值范围.(2)若22.(10分)已知矩阵,且二阶矩阵M满足AMB,求M的特征值及属于各特征值的一个特征向量.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】画出函数,将方程看作交点个数,运用图象判断根的个数.【详解】有两解,则分别有3个,2个解,故方程画出函数令故选:D的实数根的个数是3+2=5个【点睛】本题综合考查了函数的图象的运用,分类思想的运用,数学结合的思想判断方程的根,难度较大,属于中档题.2、C【解析】因答案A中的直线可以异面或相...