山东省淄博五中2024年高考仿真模拟数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,若对任意,关于x的不等式(e为自然对数的底数)至少有2个正整数解,则实数a的取值范围是()A.B.C.D.2.已知x,y满足不等式组,则点所在区域的面积是()A.1B.2C.D.3.如图,正三棱柱各条棱的长度均相等,为的中点,分别是线段和线段的动点(含端点),且满足,当运动时,下列结论中不正确的是A.在内总存在与平面平行的线段B.平面平面C.三棱锥的体积为定值D.可能为直角三角形4.设复数满足,则在复平面内的对应点位于()A.第一象限B.第二象限C.第三象限D.第四象限5.若x,y满足约束条件且的最大值为,则a的取值范围是()A.B.C.D.6.若某几何体的三视图如图所示,则该几何体的表面积为()A.240B.264C.274D.2827.在平面直角坐标系中,已知角的顶点与原点重合,始边与轴的非负半轴重合,终边落在直线上,则()A.B.C.D.8.偶函数关于点对称,当时,,求()A.B.C.D.9.某工厂利用随机数表示对生产的600个零件进行抽样测试,先将600个零件进行编号,编号分别为001,002,……,599,600.从中抽取60个样本,下图提供随机数表的第4行到第6行:若从表中第6行第6列开始向右读取数据,则得到的第6个样本编号是()A.324B.522C.535D.57810.若点位于由曲线与围成的封闭区域内(包括边界),则的取值范围是()A.B.C.D.11.已知函数,要得到函数的图象,只需将的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度12.集合,则集合的真子集的个数是D.7个A.1个B.3个C.4个,若经过点二、填空题:本题共4小题,每小题5分,共20分。13.设是定义在上的函数,且,对任意的一次函数与轴的交点为,且互不相等,则称为关于函数的平均数,记为.当_________时,为的几何平均数.(只需写出一个符合要求的函数即可)14.在△ABC中,()⊥(>1),若角A的最大值为,则实数的值是_______.15.已知三棱锥的四个顶点都在球的球面上,,则球的表面积为__________.16.若,且,则的最小值是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,直线的参数方程为(为参数,).在以为极点,轴正半轴为极轴的极坐标中,曲线:.(1)当时,求与的交点的极坐标;(2)直线与曲线交于,两点,线段中点为,求的值.18.(12分)已知在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为.(1)求曲线与直线的直角坐标方程;(2)若曲线与直线交于两点,求的值.19.(12分)如图,在四棱柱中,平面平面,是边长为2的等边三角形,,,,点为的中点.(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值.(Ⅲ)在线段上是否存在一点,使直线与平面所成的角正弦值为,若存在求出的长,若不存在说明理由.,:.若直线与关于对称,又函数在处的切线与垂20.(12分)已知函数(1)已知直线:直,求实数的值;,则当,时,求证:(2)若函数①;②.21.(12分)已知数列的前项和为,.(1)求数列的通项公式;(2)若,为数列的前项和.求证:.22.(10分)已知椭圆的上顶点为,圆与轴的正半轴交于点,与有且仅有两个交点且都在轴上,(为坐标原点).(1)求椭圆的方程;(2)已知点,不过点且斜率为的直线与椭圆交于两点,证明:直线与直线的斜率互为相反数.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】构造函数(),求导可得在上单调递增,则,问题转化为,即至少有2个正...