山东省烟台市2024届高三下学期第五次调研考试数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若,则下列不等式不能成立的是()A.B.C.D.2.已知实数满足不等式组,则的最小值为()A.B.C.D.3.是的()条件A.充分不必要B.必要不充分C.充要D.既不充分也不必要4.若,则的虚部是A.3B.C.D.5.如图,中,点D在BC上,,将沿AD旋转得到三棱锥,分别记,与平面ADC所成角为,,则,的大小关系是()A.B.C.,两种情况都存在D.存在某一位置使得6.已知函数,若有2个零点,则实数的取值范围为()A.B.C.D.7.在菱形中,,,,分别为,的中点,则()A.B.C.5D.8.由实数组成的等比数列{an}的前n项和为Sn,则“a1>0”是“S9>S8”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件9.已知不等式组表示的平面区域的面积为9,若点,则的最大值为()A.3B.6C.9D.12)10.某几何体的三视图如右图所示,则该几何体的外接球表面积为(A.B.C.D.11.如图所示的程序框图输出的是126,则①应为()A.B.C.D.12.将函数的图象分别向右平移个单位长度与向左平移(>0)个单位长度,若所得到的两个图象重合,则的最小值为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.秦九韶算法是南宋时期数学家秦九韶提出的一种多项式简化算法,如图所示的框图给出了利用秦九韶算法求多项式值的一个实例,若输入,的值分別为4,5,则输出的值为______.14.已知内角的对边分别为外接圆的面积为,则的面积为_________.15.已知平面向量,,满足=1,=2,,的夹角等于,且()•()=0,则的取值范围是_____.16.已知向量,,若满足,且方向相同,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线:(为参数),曲线(为参数).(1)设与相交于,两点,求;(2)若把曲线上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线,设点是曲线上的一个动点,求它到直线距离的最小值.18.(12分)已知两数.(1)当时,求函数的极值点;(2)当时,若恒成立,求的最大值.19.(12分)在中,、、分别是角、、的对边,且.(1)求角的值;(2)若,且为锐角三角形,求的取值范围.20.(12分)在中,内角的对边分别是,满足条件.(1)求角;(2)若边上的高为,求的长.21.(12分)在平面直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.(Ⅰ)求直线的直角坐标方程与曲线的普通方程;的值.(Ⅱ)已知点设直线与曲线相交于两点,求22.(10分)已知椭圆的离心率为是椭圆的一个焦点,点,直线的?若存斜率为1.(1)求椭圆的方程;(1)若过点的直线与椭圆交于两点,线段的中点为,是否存在直线使得在,求出的方程;若不存在,请说明理由.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据不等式的性质对选项逐一判断即可.【详解】选项A:由于,即,,所以,所以,所以成立;选项B:由于,即,所以,所以,所以不成立;选项C:由于,所以,所以,所以成立;选项D:由于,所以,所以,所以,所以成立.的最小值,作故选:B.【点睛】本题考查不等关系和不等式,属于基础题.2、B【解析】作出约束条件的可行域,在可行域内求的最小值即为,平移直线即可求解.【详解】作出实数满足不等式组的可行域,如图(阴影部分)令,则,作出,平移直线,当直线经过点时,截距最小,故,即的最小值为.故选:B【点...