山东省烟台市重点中学 2024 届高三第一次调研测试数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,不等式对恒成立,则的取值范围为( )A.B.C.D.2.已知,则( )A.5B.C.13D.3.已知集合,定义集合,则等于( )A.B.C.D.4.第七届世界军人运动会于 2019 年 10 月 18 日至 27 日在中国武汉举行,中国队以 133 金 64 银 42 铜位居金牌榜和奖牌榜的首位.运动会期间有甲、乙等五名志愿者被分配到射击、田径、篮球、游泳四个运动场地提供服务,要求每个人都要被派出去提供服务,且每个场地都要有志愿者服务,则甲和乙恰好在同一组的概率是( )A.B.C.D.5.在中,角、 、 的对边分别为、 、 ,若,,,则( )A.B.C.D.6.若执行如图所示的程序框图,则输出的值是( )A.B.C.D.47.函数的定义域为,集合,则( )A.B.C.D.8.已知双曲线 C 的两条渐近线的夹角为 60°,则双曲线 C 的方程不可能为( )A.B.C.D.9.若复数(为虚数单位)的实部与虚部相等,则的值为( )A.B.C.D.10.直线与圆的位置关系是( )A.相交B.相切C.相离D.相交或相切11.已知正项等比数列中,存在两项,使得,,则的最小值是( )A.B.C.D.12.若点位于由曲线与围成的封闭区域内(包括边界),则的取值范围是( )A.B.C.D.二、填空题:本题共 4 小题,每小题 5 分,共 20 分。13.在等差数列()中,若,,则的值是______.14.已知椭圆的左右焦点分别为,过且斜率为 的直线交椭圆于,若三角形的面积等于,则该椭圆的离心率为________.15.已知数列的前项满足,则______.16.已知函数,若对于任意正实数,均存在以为三边边长的三角形,则实数 k 的取值范围是_______.三、解答题:共 70 分。解答应写出文字说明、证明过程或演算步骤。17.(12 分)传染病的流行必须具备的三个基本环节是:传染源、传播途径和人群易感性.三个环节必须同时存在,方能构成传染病流行.呼吸道飞沫和密切接触传播是新冠状病毒的主要传播途径,为了有效防控新冠状病毒的流行,人们出行都应该佩戴口罩.某地区已经出现了新冠状病毒的感染病人,为了掌握该地区居民的防控意识和防控情况,用分层抽样的方法从全体居民中抽出一个容量为 100 的样本,统计样本中每个人出行是否会佩戴口罩的情况,得到下面列联表:戴口罩不戴口罩青年人5010中老年人2020(1)能否有的把握认为是否会佩戴口罩出行的行为与年龄有关?(2)用样本估计总体,若从该地区出行不戴口罩的居民中随机抽取 5 人,求恰好有 2 人是青年人的概率.附:0.1000.0500.0100.0012.7063.8416.63510.82818.(12 分)为践行“绿水青山就是金山银山”的发展理念和提高生态环境的保护意识,高二年级准备成立一个环境保护兴趣小组.该年级理科班有男生 400 人,女生 200 人;文科班有男生 100 人,女生 300 人.现按男、女用分层抽样从理科生中抽取 6 人,按男、女分层抽样从文科生中抽取 4 人,组成环境保护兴趣小组,再从这 10 人的兴趣小组中抽出4 人参加学校的环保知识竞赛.(1)设事件为“选出的这 4 个人中要求有两个男生两个女生,而且这两个男生必须文、理科生都有”,求事件发生的概率;(2)用表示抽取的 4 人中文科女生的人数,求的分布列和数学期望.19.(12 分)已知函数.(1)当时,解不等式;(2)当时,不等式恒成立,求实数的取值范围.20.(12 分)已知集合,,,将的所有子集任意排列,得到一个有序集合组,其中.记集合中元素的个数为,,,规定空集中元素的个数为.当时,求的值;利用数学归纳法证明:不论为何值,总存在有序集合组,满足任意,,都...