山东省蒙阴县第一中学2023-2024学年高考压轴卷数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.“”是“直线与互相平行”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.若将函数的图象上各点横坐标缩短到原来的(纵坐标不变)得到函数的图象,则下列说法正确的是()A.函数在上单调递增B.函数的周期是C.函数的图象关于点对称D.函数在上最大值是13.的展开式中的系数为()A.B.C.D.4.已知非零向量满足,若夹角的余弦值为,且,则实数的值为()A.B.C.或D.5.正的边长为2,将它沿边上的高翻折,使点与点间的距离为,此时四面体的外接球表面积为()A.B.C.D.6.已知函数,则()A.函数在上单调递增B.函数在上单调递减C.函数图像关于对称D.函数图像关于对称7.已知某几何体的三视图如右图所示,则该几何体的体积为()A.3B.C.D.8.在中,为中点,且,若,则()A.B.C.D.9.已知平面和直线a,b,则下列命题正确的是()A.若∥,b∥,则∥B.若,,则∥C.若∥,,则D.若,b∥,则10.设,是两条不同的直线,,是两个不同的平面,下列命题中正确的是()A.若,,,则B.若,,,则C.若,,,则D.若,,,则11.要排出高三某班一天中,语文、数学、英语各节,自习课节的功课表,其中上午节,下午节,若要求节语文课必须相邻且节数学课也必须相邻(注意:上午第五节和下午第一节不算相邻),则不同的排法种数是()A.B.C.D.12.记个两两无交集的区间的并集为阶区间如为2阶区间,设函数,则不等式的解集为()A.2阶区间B.3阶区间C.4阶区间D.5阶区间二、填空题:本题共4小题,每小题5分,共20分。13.设Sn为数列{an}的前n项和,若an0,a1=1,且2Sn=an(an+t),n∈N,则S10=_____.14.直线xsinα+y+2=0的倾斜角的取值范围是________________.15.若双曲线的两条渐近线斜率分别为,,若,则该双曲线的离心率为________.16.已知两个单位向量满足,则向量与的夹角为_____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设抛物线的焦点为,准线为,为抛物线过焦点的弦,已知以为直径的圆与相切于点.(1)求的值及圆的方程;(2)设为上任意一点,过点作的切线,切点为,证明:.18.(12分)某公园有一块边长为3百米的正三角形空地,拟将它分割成面积相等的三个区域,用来种植三种花卉.方案是:先建造一条直道将分成面积之比为的两部分(点D,E分别在边,上);再取的中点M,建造直道(如图).设,,(单位:百米).(1)分别求,关于x的函数关系式;(2)试确定点D的位置,使两条直道的长度之和最小,并求出最小值.19.(12分)已知函数.(1)求不等式的解集;(2)若对任意恒成立,求的取值范围.20.(12分)椭圆的右焦点,过点且与轴垂直的直线被椭圆截得的弦长为.(1)求椭圆的方程;(2)过点且斜率不为0的直线与椭圆交于,两点.为坐标原点,为椭圆的右顶点,求四边形面积的最大值.21.(12分)某公司生产的某种产品,如果年返修率不超过千分之一,则其生产部门当年考核优秀,现获得该公司年的相关数据如下表所示:年份20112012201320142015201620172018年生产台数(万台)2345671011该产品的年利润(百万元)2.12.753.53.2534.966.5年返修台数(台)2122286580658488部分计算结果:,,,,注:年返修率=(1)从该公司年的相关数据中任意选取3年的数据,以表示3年中生产部门获得考核优秀的次数,求的分布列和数学期望;(百万元)关于年(2)根据散点图发现2015年数据偏差较大,如果去掉该年的数据,试用剩下的数据求出年利润生产台数(万台)的线性回归方程(精确到0.01).附:线性回归方程中...