山西省古县、离石区、高县 2024 届高三下学期第六次检测数学试卷请考生注意:1.请用 2B 铅笔将选择题答案涂填在答题纸相应位置上,请用 0.5 毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数的最小正周期为的图象向左平移个单位长度后关于轴对称,则的单调递增区间为( )A.B.C.D.2.已知命题:是“直线和直线互相垂直”的充要条件;命题:对任意都有零点;则下列命题为真命题的是( )A.B.C.D.3.在棱长均相等的正三棱柱中,为的中点,在上,且,则下述结论:①;②;③平面平面:④异面直线与所成角为其中正确命题的个数为( )A.1B.2C.3D.44.已知 a,b 是两条不同的直线,α,β 是两个不同的平面,且,,则“”是“”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.如图,已知直线与抛物线相交于 A,B 两点,且 A、B 两点在抛物线准线上的投影分别是 M,N,若,则的值是( )A.B.C.D.6.设,则( )A.B.C.D.7. “”是“”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.己知全集为实数集 R,集合 A={x|x2 +2x-8>0},B={x|log2x<1},则等于( )A.[4,2]B.[4,2)C.(4,2)D.(0,2)9.如图所示是某年第一季度五省 GDP 情况图,则下列说法中不正确的是( )A.该年第一季度 GDP 增速由高到低排位第 3 的是山东省B.与去年同期相比,该年第一季度的 GDP 总量实现了增长C.该年第一季度 GDP 总量和增速由高到低排位均居同一位的省份有 2 个D.去年同期浙江省的 GDP 总量超过了 4500 亿元10.等差数列中,,,则数列前 6 项和为()A.18B.24C.36D.7211.设,,,则、、的大小关系为( )A.B.C.D.12.已知等比数列的前项和为,若,且公比为 2,则与的关系正确的是( )A.B.C.D.二、填空题:本题共 4 小题,每小题 5 分,共 20 分。13.已知,在方向上的投影为,则与的夹角为_________.14.双曲线的左焦点为,点,点 P 为双曲线右支上的动点,且周长的最小值为 8,则双曲线的实轴长为________,离心率为________.15.已知实数,满足约束条件,则的最大值是__________.16.已知为偶函数,当时,,则曲线在点处的切线方程是_________.三、解答题:共 70 分。解答应写出文字说明、证明过程或演算步骤。17.(12 分)已知函数,(1)证明:在区间单调递减;(2)证明:对任意的有.18.(12 分)在中,角的对边分别为,且.(1)求角的大小;(2)若,求边上的高.19.(12 分)已知函数,函数.(Ⅰ)判断函数的单调性;(Ⅱ)若时,对任意,不等式恒成立,求实数 的最小值.20.(12 分)在直角坐标系中,已知曲线的参数方程为(为参数),以原点为极点,轴的非负半轴为极轴建立极坐标系,射线的极坐标方程为,射线的极坐标方程为.(Ⅰ)写出曲线的极坐标方程,并指出是何种曲线;(Ⅱ)若射线与曲线交于两点,射线与曲线交于两点,求面积的取值范围.21.(12 分)已知圆的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线 的参数方程是是参数),若直线 与圆相切,求实数的值.22.(10 分)如图,设椭圆:,长轴的右端点与抛物线:的焦点重合,且椭圆的离心率是.(Ⅰ)求椭圆的标准方程;(Ⅱ)过作直线 交抛物线于,两点,过且与直线 垂直的直线交椭圆于另一点,求面积的最小值,以及取到最小值时直线 的方程.参考答案一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】先由函数的周期和图象的平移后的函数的图象性质得出函数的解析式,从而得出的解析式,再根据正弦函数的单调递增区间得出函数的单调递增区间,可得选项.【详解】因为函数...