山西省长治市二中2023-2024学年高三冲刺模拟数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.椭圆是日常生活中常见的图形,在圆柱形的玻璃杯中盛半杯水,将杯体倾斜一个角度,水面的边界即是椭圆.现有一高度为12厘米,底面半径为3厘米的圆柱形玻璃杯,且杯中所盛水的体积恰为该玻璃杯容积的一半(玻璃厚度忽略不计),在玻璃杯倾斜的过程中(杯中的水不能溢出),杯中水面边界所形成的椭圆的离心率的取值范围是()A.B.C.D.2.设是两条不同的直线,是两个不同的平面,则下列命题正确的是()A.若,,则B.若,,则C.若,,,则D.若,,,则3.函数的部分图象大致是()A.B.C.D.4.若,则的虚部是A.35.在B.C.D.A.,则中,为边上的中点,且()D.B.C.6.已知双曲线),其右焦点F的坐标为,点是第一象限内双曲线渐近线上的一点,为坐标原点,满足,线段交双曲线于点.若为的中点,则双曲线的离心率为()A.B.2C.D.中,7.如图,在正四棱柱,分别为的中点,异面直线与所成角的余弦值为,则()A.直线与直线异面,且B.直线与直线共面,且C.直线与直线异面,且D.直线与直线共面,且8.在声学中,声强级(单位:)由公式给出,其中为声强(单位:).,,那么()A.B.C.D.9.函数的部分图象如图所示,则的单调递增区间为()A.B.C.D.10.已知函数,,其中为自然对数的底数,若存在实数,使成立,则实数的值为()A.B.C.D.11.过抛物线的焦点的直线与抛物线交于、两点,且,抛物线的准线与轴交于,的面积为,则()A.B.C.D.与直线12.已知椭圆,直线相交于点,且点在椭圆内恒成立,则椭圆的离心率取值范围为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.复数为虚数单位)的虚部为__________.14.已知函数是定义在上的奇函数,其图象关于直线对称,当时,(其中是自然对数的底数,若,则实数的值为_____.15.曲线在点处的切线方程为______.16.甲、乙、丙、丁四人参加冬季滑雪比赛,有两人获奖.在比赛结果揭晓之前,四人的猜测如下表,其中“√”表示猜测某人获奖,“×”表示猜测某人未获奖,而“○”则表示对某人是否获奖未发表意见.已知四个人中有且只有两个人的猜测是正确的,那么两名获奖者是_______.甲获奖乙获奖丙获奖丁获奖甲的猜测√××√乙的猜测×○○√丙的猜测×√×√丁的猜测○○√×三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数在上的最大值为3.(1)求的值及函数的单调递增区间;(2)若锐角中角所对的边分别为,且,求的取值范围.18.(12分)已知圆:和抛物线:,为坐标原点.(1)已知直线和圆相切,与抛物线交于两点,且满足,求直线的方程;(2)过抛物线上一点作两直线和圆相切,且分别交抛物线于两点,若直线的斜率为,求点的坐标.19.(12分)已知椭圆的左、右焦点分别为直线垂直于轴,垂足为,与抛物线交于不同的两点,且过的直线与椭圆交于两点,设且.(1)求点的坐标;(2)求的取值范围.20.(12分)某商场举行有奖促销活动,顾客购买每满元的商品即可抽奖一次.抽奖规则如下:抽奖者掷各面标有点数的正方体骰子次,若掷得点数大于,则可继续在抽奖箱中抽奖;否则获得三等奖,结束抽奖,已知抽奖箱中装有个红球与个白球,抽奖者从箱中任意摸出个球,若个球均为红球,则获得一等奖,若个球为个红球和个白球,则获得二等奖,否则,获得三等奖(抽奖箱中的所有小球,除颜色外均相同).若,求顾客参加一次抽奖活动获得三等奖的概率;若一等奖可获奖金元,二等奖可获奖金元,三等奖可获奖金元,记顾客一次抽奖所获得的奖金为,若商场希望的数学期望不超过元,求的最小值.21.(12分)自湖北...