广东省七校联合体2024年高三最后一模数学试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数(),若函数有三个零点,则的取值范围是()A.B.C.D.2.已知函数是上的偶函数,且当时,函数是单调递减函数,则,,的大小关系是()A.B.C.D.3.已知集合,,则A.B.C.D.(其中4.已知定义在上的奇函数满足:),且在区间上是减函数,令,,,则,,的大小关系(用不等号连接)为()A.B.C.D.5.已知平面向量,,满足:,,则的最小值为()C.7D.8A.5B.66.设F为双曲线C:(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P、Q两点.若PQ=OF,则C的离心率为A.B.C.2D.7.过椭圆的左焦点的直线过的上顶点,且与椭圆相交于另一点,点在轴上的射影为,若,是坐标原点,则椭圆的离心率为()A.B.C.D.8.若复数,其中为虚数单位,则下列结论正确的是()A.的虚部为B.C.的共轭复数为D.为纯虚数9.若函数在时取得极值,则()A.B.C.D.10.已知,则“m⊥n”是“m⊥l”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件11.已知函数,则下列判断错误的是()A.的最小正周期为B.的值域为C.的图象关于直线对称D.的图象关于点对称12.设,分别为双曲线(a>0,b>0)的左、右焦点,过点作圆的切线与双曲线的左支交于点P,若,则双曲线的离心率为()A.B.C.D.的值为_______.二、填空题:本题共4小题,每小题5分,共20分。13.已知实数满足(为虚数单位),则14.已知正四棱柱的底面边长为,侧面的对角线长是,则这个正四棱柱的体积是____.15.在中,内角的对边分别为,已知,则的面积为___________.16.设,若关于的方程有实数解,则实数的取值范围_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)百年大计,教育为本.某校积极响应教育部号召,不断加大拔尖人才的培养力度,为清华、北大等排名前十的名校输送更多的人才.该校成立特长班进行专项培训.据统计有如下表格.(其中表示通过自主招生获得降分资格的学生人数,表示被清华、北大等名校录取的学生人数)年份(届)2014201520162017201841495557638296108106123(1)通过画散点图发现与之间具有线性相关关系,求关于的线性回归方程;(保留两位有效数字)(2)若已知该校2019年通过自主招生获得降分资格的学生人数为61人,预测2019年高考该校考人名校的人数;(3)若从2014年和2018年考人名校的学生中采用分层抽样的方式抽取出5个人回校宣传,在选取的5个人中再选取2人进行演讲,求进行演讲的两人是2018年毕业的人数的分布列和期望.参考公式:,参考数据:,,,18.(12分)已知函数是减函数.(1)试确定a的值;(2)已知数列,求证:.19.(12分)已知圆,定点,为平面内一动点,以线段为直径的圆内切于圆,设动点的轨迹为曲线(1)求曲线的方程(2)过点的直线与交于两点,已知点,直线分别与直线交于两点,线段的中点是否在定直线上,若存在,求出该直线方程;若不是,说明理由.20.(12分)如图,在三棱柱中,平面,,且.(1)求棱与所成的角的大小;的平面角的余弦值为.(2)在棱上确定一点,使二面角21.(12分)在中,角A,B,C的对边分别是a,b,c,且向量与向量共线.(1)求B;(2)若,,且,求BD的长度.22.(10分)已知函数,.(1)若对于任意实数,恒成立,求实数的范围;(2)当时,是否存在实数,使曲线:在点处的切线与轴垂直?若存在,求出的值;若不存在,说明理由.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】分段求解函数零点,数形结合,分类讨论即可求得结果.【详解】作出和,的图像如下所示:函数有三个零点,...