电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

广东省深圳市康桥书院2024届高考数学三模试卷含解析.doc

广东省深圳市康桥书院2024届高考数学三模试卷含解析.doc_第1页
1/29
广东省深圳市康桥书院2024届高考数学三模试卷含解析.doc_第2页
2/29
广东省深圳市康桥书院2024届高考数学三模试卷含解析.doc_第3页
3/29
广东省深圳市康桥书院2024届高考数学三模试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.甲、乙、丙、丁四人通过抓阄的方式选出一人周末值班(抓到“值”字的人值班).抓完阄后,甲说:“我没抓到.”乙说:“丙抓到了.”丙说:“丁抓到了”丁说:“我没抓到."已知他们四人中只有一人说了真话,根据他们的说法,可以断定值班的人是()A.甲B.乙C.丙D.丁2.已知实数满足不等式组,则的最小值为()A.B.C.D.3.单位正方体ABCD-,黑、白两蚂蚁从点A出发沿棱向前爬行,每走完一条棱称为“走完一段”.白蚂蚁爬地的路线是AA1→A1D1→‥,黑蚂蚁爬行的路线是AB→BB1→‥,它们都遵循如下规则:所爬行的第i+2段与第i段所在直线必须是异面直线(iN).设白、黑蚂蚁都走完2020段后各自停止在正方体的某个顶点处,这时黑、白两蚂蚁的距离是()A.1B.C.D.04.已知,则下列说法中正确的是()A.是假命题B.是真命题C.是真命题D.是假命题5.已知水平放置的△ABC是按“斜二测画法”得到如图所示的直观图,其中B′O′=C′O′=1,A′O′=,那么原△ABC的面积是()A.B.2C.D.6.已知复数z满足i•z=2+i,则z的共轭复数是()A.﹣1﹣2iB.﹣1+2iC.1﹣2iD.1+2i7.已知正四面体的内切球体积为v,外接球的体积为V,则()A.4B.8C.9D.278.若满足,且目标函数的最大值为2,则的最小值为()A.8B.4C.D.69.定义:表示不等式的解集中的整数解之和.若,,,则实数的取值范围是A.B.C.D.10.若函数()在时取得最小值,则A.B.C.D.11.已知函数,,若对,且,使得,则实数的取值范围是()A.B.C.D.12.已知正方体的棱长为2,点在线段上,且,平面经过点,则正方体被平面截得的截面面积为()A.B.C.D.,则的值是.二、填空题:本题共4小题,每小题5分,共20分。13.已知等比数列的前项和为,若14.展开式中的系数为________.15.已知函数有且只有一个零点,则实数的取值范围为__________.16.在中,角,,所对的边分别边,且,设角的角平分线交于点,则的值最小时,___.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线与椭圆恰有一个公共点,与圆相交于两点.(I)求与的关系式;(II)点与点关于坐标原点对称.若当时,的面积取到最大值,求椭圆的离心率.18.(12分)如图,正方形所在平面外一点满足,其中分别是与的中点.(1)求证:;(2)若,且二面角的平面角的余弦值为,求与平面所成角的正弦值.19.(12分)在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程和曲线的直角坐标方程;(2)若点在曲线上,点在曲线上,求的最小值及此时点的坐标.20.(12分)已知函数(1)讨论的单调性;(2)当时,,求的取值范围.21.(12分)在平面直角坐标系中,已知椭圆的中心为坐标原点焦点在轴上,右顶点到右焦点的距离与它到右准线的距离之比为.(1)求椭圆的标准方程;(2)若是椭圆上关于轴对称的任意两点,设,连接交椭圆于另一点.求证:直线过定点并求出点的坐标;的取值范围.(3)在(2)的条件下,过点的直线交椭圆于两点,求22.(10分)已知曲线的参数方程为为参数),以直角坐标系原点为极点,以轴正半轴为极轴并取相同的单位长度建立极坐标系.(1)求曲线的极坐标方程,并说明其表示什么轨迹;(2)若直线的极坐标方程为,求曲线上的点到直线的最大距离.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】可采用假设法进行讨论推理,即可得到结论.【详解】由题意,假设甲:我没有抓到...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

广东省深圳市康桥书院2024届高考数学三模试卷含解析.doc

您可能关注的文档

确认删除?