广东省深圳市第二外国语学校2024届高考冲刺数学模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知a,b∈R,,则()A.b=3aB.b=6aC.b=9aD.b=12a2.一个几何体的三视图如图所示,则这个几何体的体积为()A.B.C.D.3.设,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.若集合,,则=()A.B.C.D.5.据国家统计局发布的数据,2019年11月全国CPI(居民消费价格指数),同比上涨4.5%,CPI上涨的主要因素是猪肉价格的上涨,猪肉加上其他畜肉影响CPI上涨3.27个百分点.下图是2019年11月CPI一篮子商品权重,根据该图,下列结论错误的是()A.CPI一篮子商品中所占权重最大的是居住B.CPI一篮子商品中吃穿住所占权重超过50%C.猪肉在CPI一篮子商品中所占权重约为2.5%D.猪肉与其他畜肉在CPI一篮子商品中所占权重约为0.18%6.已知数列的前n项和为,,且对于任意,满足,则(上单调递减,已知)A.B.C.D.7.定义在R上的偶函数满足,且在区间是锐角三角形的两个内角,则的大小关系是()A.B.C.D.以上情况均有可能8.函数y=sin2x的图象可能是A.B.C.D.9.某几何体的三视图如图所示,若图中小正方形的边长均为1,则该几何体的体积是A.B.C.D.10.如图,将两个全等等腰直角三角形拼成一个平行四边形,将平行四边形沿对角线折起,使平面平面,则直线与所成角余弦值为()A.B.C.D.11.已知是双曲线的左、右焦点,是的左、右顶点,点在过且斜率为的直线上,为等腰三角形,,则的渐近线方程为()A.B.C.D.12.已知的展开式中第项与第项的二项式系数相等,则奇数项的二项式系数和为().A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.已知两个单位向量满足,则向量与的夹角为_____________.14.如图,是圆的直径,弦的延长线相交于点垂直的延长线于点.求证:15.的展开式中,的系数是__________.(用数字填写答案)16.(5分)在平面直角坐标系中,过点作倾斜角为的直线,已知直线与圆相交于两点,则弦的长等于____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)曲线的参数方程为(为参数),以原点为极点,轴的正半轴为极轴的极坐标系中,曲线的极坐标方程为.(1)求曲线的极坐标方程和曲线的直角坐标方程;(2)若直线与曲线,的交点分别为、(、异于原点),当斜率时,求的最小值.18.(12分)在以为顶点的五面体中,底面为菱形,,,,二面角为直二面角.(Ⅰ)证明:;(Ⅱ)求二面角的余弦值.19.(12分)已知.(1)求不等式的解集;(2)记的最小值为,且正实数满足.证明:.20.(12分)已知在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴非负半轴为极轴建立极坐标系,曲线的极坐标方程为,点的极坐标为.(1)求直线的极坐标方程;(2)若直线与曲线交于,两点,求的面积.21.(12分)在中,角、、的对边分别为、、,且.(1)若,,求的值;(2)若,求的值.22.(10分)如图,在棱长为的正方形中,,分别为,边上的中点,现以为折痕将点旋转至点的位置,使得为直二面角.(1)证明:;(2)求与面所成角的正弦值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】两复数相等,实部与虚部对应相等.【详解】由,得,即a,b=1.∴b=9a.故选:C.【点睛】本题考查复数的概念,属于基础题.2、B【解析】还原几何体可知原几何体为半个圆柱和一个四棱锥组成的组合体,分别求解两个部分的体积,加和得到结果...