广东省深圳市罗湖外语学校2024年高考仿真卷数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,点E是正方体ABCD-A1B1C1D1的棱DD1的中点,点F,M分别在线段AC,BD1(不包含端点)上运动,则()A.在点F的运动过程中,存在EF//BC1).B.在点M的运动过程中,不存在B1M⊥AEC.四面体EMAC的体积为定值D.四面体FA1C1B的体积不为定值2.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是(A.收入最高值与收入最低值的比是B.结余最高的月份是月份C.与月份的收入的变化率与至月份的收入的变化率相同D.前个月的平均收入为万元3.记的最大值和最小值分别为和.若平面向量、、,满足,则()A.B.C.D.4.已知集合,则()A.B.C.D.5.一个超级斐波那契数列是一列具有以下性质的正整数:从第三项起,每一项都等于前面所有项之和(例如:1,3,4,8,16…).则首项为2,某一项为2020的超级斐波那契数列的个数为()A.3B.4C.5D.66.函数的单调递增区间是()A.B.C.D.7.已知等差数列的公差为-2,前项和为,若,,为某三角形的三边长,且该三角形有一个内角为,则的最大值为()A.5B.11C.20D.258.已知定义在上函数的图象关于原点对称,且,若,则A.0B.1()D.674C.6739.已知复数,若,则的值为()A.110.过圆B.C.D.A.11.函数外一点引圆的两条切线,则经过两切点的直线方程是().B.C.D.()的图像可以是()A.B.C.D.12.若x,y满足约束条件则z=的取值范围为()A.[]B.[,3]C.[,2]D.[,2]二、填空题:本题共4小题,每小题5分,共20分。13.在中,为定长,,若的面积的最大值为,则边的长为____________.14.若,,则___________.15.已知函数有且只有一个零点,则实数的取值范围为__________.16.已知为偶函数,当时,,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图1,在等腰梯形中,两腰,底边,,,是的三等分点,是的中点.分别沿,将四边形和折起,使,重合于点,得到如图2所示的几何体.在图2中,,分别为,的中点.(1)证明:平面.所成角的正弦值.(2)求直线与平面18.(12分)设椭圆的离心率为,左、右焦点分别为,点D在椭圆C上,的周长为.(1)求椭圆C的标准方程;(2)过圆上任意一点P作圆E的切线l,若l与椭圆C交于A,B两点,O为坐标原点,求证:为定值.所在平面外一点满足,其中分别是与的中点.19.(12分)如图,正方形(1)求证:;(2)若,且二面角的平面角的余弦值为,求与平面所成角的正弦值.件产品,统计其质量指标值并绘制频率分布直方图(如20.(12分)某企业生产一种产品,从流水线上随机抽取图1):规定产品的质量指标值在的为劣质品,在的为优等品,在的为特优品,销售时劣质品每件亏损元,优等品每件盈利元,特优品每件盈利元,以这件产品的质量指标值位于各区间的频率代替产品的质量指标值位于该区间的概率.(1)求每件产品的平均销售利润;(2)该企业主管部门为了解企业年营销费用(单位:万元)对年销售量(单位:万件)的影响,对该企业近年的年营销费用和年销售量,数据做了初步处理,得到的散点图(如图2)及一些统计量的值.表中,,,.根据散点图判断,可以作为年销售量(万件)关于年营销费用(万元)的回归方程.①求关于的回归方程;②用所求的回归方程估计该企业每年应投入多少营销费,才能使得该企业的年收益的预报值达到最大?(收益销售利润营销费用,取)附:对于一组数据,,,,其回归直线的斜率和截距的最小二乘估计分别为,.21.(12分)等差数列的前项和为,已知,.(1)...