广东省肇庆学院附属中学2023-2024学年高三下学期联考数学试题注意事项铅笔作答;第二部分必须用黑1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数(),若函数在上有唯一零点,则的值为()A.1B.或0C.1或0D.2或02.已知的内角的对边分别是且,若为最大边,则的取值范围是()A.B.C.D.3.若点是角的终边上一点,则()A.B.C.D.4.在中,内角A,B,C所对的边分别为a,b,c,且.若,的面积为,则()A.5B.C.4D.165.已知等差数列的前项和为,,,则()A.25B.32C.35D.406.设不等式组,表示的平面区域为,在区域内任取一点,则点的坐标满足不等式的概率为A.B.C.D.7.在边长为的菱形中,,沿对角线折成二面角为的四面体(如图),则此四面体的外接球表面积为()A.B.C.D.8.一个由两个圆柱组合而成的密闭容器内装有部分液体,小圆柱底面半径为,大圆柱底面半径为,如图1放置容器时,液面以上空余部分的高为,如图2放置容器时,液面以上空余部分的高为,则()A.B.C.D.9.半径为2的球内有一个内接正三棱柱,则正三棱柱的侧面积的最大值为()A.B.C.D.10.已知点是抛物线:的焦点,点为抛物线的对称轴与其准线的交点,过作抛物线的切线,切点为,若点恰好在以,为焦点的双曲线上,则双曲线的离心率为()A.B.C.D.11.已知实数、满足约束条件,则的最大值为()A.B.C.D.12.已知正三棱锥的所有顶点都在球的球面上,其底面边长为4,、、分别为侧棱,,的中点.若在三棱锥内,且三棱锥的体积是三棱锥体积的4倍,则此外接球的体积与三棱锥体积的比值为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.已知内角,,的对边分别为,,.,,则_________.14.已知双曲线的两条渐近线方程为,若顶点到渐近线的距离为1,则双曲线方程为.15.平行四边形中,,为边上一点(不与重合),将平行四边形沿折起,使五点均在一个球面上,当四棱锥体积最大时,球的表面积为________.16.已知双曲线的左右焦点分别为,过的直线与双曲线左支交于两点,,的内切圆的圆心的纵坐标为,则双曲线的离心率为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。.以坐标原点O为极点,x轴正17.(12分)在平面直角坐标系中,直线的倾斜角为,且经过点半轴为极轴建立极坐标系,直线,从原点O作射线交于点M,点N为射线OM上的点,满足,记点N的轨迹为曲线C.(Ⅰ)求出直线的参数方程和曲线C的直角坐标方程;(Ⅱ)设直线与曲线C交于P,Q两点,求的值.18.(12分)设函数.(1)若,求函数的值域;(2)设为的三个内角,若,求的值;19.(12分)已知.(Ⅰ)当时,解不等式;(Ⅱ)若的最小值为1,求的最小值.20.(12分)已知{an}是一个公差大于0的等差数列,且满足a3a5=45,a2+a6=1.(I)求{an}的通项公式;(Ⅱ)若数列{bn}满足:…,求{bn}的前n项和.21.(12分)已知奇函数的定义域为,且当时,.(1)求函数的解析式;(2)记函数,若函数有3个零点,求实数的取值范围.22.(10分)设(1)证明:当时,;(2)当时,求整数的最大值.(参考数据:,)参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】求出函数的导函数,当时,只需,即,令,利用导数求其单调区间,即可求出参数的值,当时,根据函数的单调性及零点存在性定理可判断;【详解】(),解: ∴,∴当时,由得,则在上单调递减,在上单调递增,所以是极小值,∴只需,即.令,则,∴函数在上单调递增. ,∴;当时,,函数在上单调递减, ,,函数在上有且只有一个零点,∴的值是1或0.故选:C【点睛】本题考查利用导数研究函数的零点问题,零点存在性定理的应用,属于中档题.2、C【解析】由,化简得到的值,根据余...