广东省肇庆市饶平县凤洲中学2024年高三适应性调研考试数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知倾斜角为的直线与直线垂直,则()A.B.C.D.2.若复数是纯虚数,则实数的值为()A.或B.C.D.或3.在函数:①;②;③;④中,最小正周期为的所有函数为()B.①③④C.②④D.①③A.①②③,则使的的值为()4.若数列满足且A.B.C.D.5.执行如图所示的程序框图,则输出的()A.2B.3C.D.6.陀螺是中国民间最早的娱乐工具,也称陀罗.如图,网格纸上小正方形的边长为,粗线画出的是某个陀螺的三视图,则该陀螺的表面积为()A.B.C.D.7.设双曲线(a>0,b>0)的一个焦点为F(c,0)(c>0),且离心率等于,若该双曲线的一条渐近线被圆x2+y2﹣2cx=0截得的弦长为2,则该双曲线的标准方程为()A.B.C.D.8.复数满足为虚数单位),则的虚部为()A.9.已知圆B.C.D.A.1与抛物线的准线相切,则的值为()10.已知A.B.2C.D.411.已知函数,则不等式的解集是()D.B.C.恒成立,则的取值范围为(),当时,A.B.C.D.12.已知双曲线的两条渐近线与抛物线的准线分别交于点、,O为坐标原点.若双曲线的离心率为2,三角形AOB的面积为,则p=().A.1B.C.2D.3,则_______.二、填空题:本题共4小题,每小题5分,共20分。13.记为等比数列的前n项和,已知,14.已知双曲线的左右焦点分别为,过的直线与双曲线左支交于两点,,的内切圆的圆心的纵坐标为,则双曲线的离心率为________.15.在平面直角坐标系xOy中,己知直线与函数的图象在y轴右侧的公共点从左到右依次为,,…,若点的横坐标为1,则点的横坐标为________.16.已知函数图象上一点处的切线方程为,则_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)为了响应国家号召,促进垃圾分类,某校组织了高三年级学生参与了“垃圾分类,从我做起”的知识问卷作答随机抽出男女各20名同学的问卷进行打分,作出如图所示的茎叶图,成绩大于70分的为“合格”.(Ⅰ)由以上数据绘制成2×2联表,是否有95%以上的把握认为“性别”与“问卷结果”有关?男女总计合格不合格总计(Ⅱ)从上述样本中,成绩在60分以下(不含60分)的男女学生问卷中任意选2个,记来自男生的个数为,求的分布列及数学期望.附:0.1000.0500.0100.0012.7063.8416.63510.82818.(12分)在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程和曲线的直角坐标方程;(2)若点在曲线上,点在曲线上,求的最小值及此时点的坐标.19.(12分)已知圆,定点,为平面内一动点,以线段为直径的圆内切于圆,设动点的轨迹为曲线(1)求曲线的方程(2)过点的直线与交于两点,已知点,直线分别与直线交于两点,线段的中点是否在定直线上,若存在,求出该直线方程;若不是,说明理由.20.(12分)以坐标原点为极点,轴的正半轴为极轴,且在两种坐标系中取相同的长度单位,建立极坐标系,判断直线为参数)与圆的位置关系.21.(12分)从抛物线C:()外一点作该抛物线的两条切线PA、PB(切点分别为A、B),分别与x轴相交于C、D,若AB与y轴相交于点Q,点在抛物线C上,且(F为抛物线的焦点).(1)求抛物线C的方程;(2)①求证:四边形是平行四边形.②四边形能否为矩形?若能,求出点Q的坐标;若不能,请说明理由.22.(10分)已知矩阵,,若矩阵,求矩阵的逆矩阵.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】倾斜角为的直线与直线垂直,利用相互垂直的直线斜率之间的关系...