广东省韶关市新丰县一中2024届高三考前热身数学试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.中心在原点,对称轴为坐标轴的双曲线的两条渐近线与圆都相切,则双曲线的离心率是()A.2或B.2或C.或D.或2.若数列为等差数列,且满足,为数列的前项和,则()A.B.C.D.3.已知椭圆的左、右焦点分别为、,过点的直线与椭圆交于、两点.若的内切圆与线段在其中点处相切,与相切于点,则椭圆的离心率为()A.B.C.D.4.设,则关于的方程所表示的曲线是()A.长轴在轴上的椭圆B.长轴在轴上的椭圆C.实轴在轴上的双曲线D.实轴在轴上的双曲线5.在直角梯形中,,,,,点为上一点,且,当的值最大时,()A.B.2C.D.6.双曲线的渐近线方程是()A.B.C.D.7.已知数列是公差为的等差数列,且成等比数列,则()A.4B.3C.2D.18.设,是方程的两个不等实数根,记().下列两个命题()①数列的任意一项都是正整数;②数列存在某一项是5的倍数.A.①正确,②错误B.①错误,②正确C.①②都正确D.①②都错误9.已知,则不等式的解集是()A.B.C.D.10.已知集合,则集合真子集的个数为()A.3B.4C.7D.8,在上投影为,则的最小值为()11.已知向量,满足A.B.C.D.12.“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.将含有甲、乙、丙的6人平均分成两组参加“文明交通”志愿者活动,其中一组指挥交通,一组分发宣传资料,则甲、乙至少一人参加指挥交通且甲、丙不在同一个组的概率为__________.14.函数的值域为_____.15.设等差数列的前项和为,若,,则______,的最大值是______.16.已知,满足,则的展开式中的系数为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知在多面体中,平面平面,且四边形为正方形,且//,,,点,分别是,的中点.(1)求证:平面;(2)求平面与平面所成的锐二面角的余弦值.18.(12分)如图,在四棱锥中,侧棱底面,,,,,是棱中点.(1)已知点在棱上,且平面平面,试确定点的位置并说明理由;(2)设点是线段上的动点,当点在何处时,直线与平面所成角最大?并求最大角的正弦值.19.(12分)在以为顶点的五面体中,底面为菱形,,,,二面角为直二面角.(Ⅰ)证明:;(Ⅱ)求二面角的余弦值.20.(12分)已知函数.(Ⅰ)当时,讨论函数的单调区间;(Ⅱ)若对任意的和恒成立,求实数的取值范围.21.(12分)已知多面体中,、均垂直于平面,,,,是的中点.(1)求证:平面;(2)求直线与平面所成角的正弦值.22.(10分)如图,在三棱锥ABCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据题意,由圆的切线求得双曲线的渐近线的方程,再分焦点在x、y轴上两种情况讨论,进而求得双曲线的离心率.【详解】设双曲线C的渐近线方程为y=kx,是圆的切线得:,得双曲线的一条渐近线的方程为∴焦点在x、y轴上两种情况讨论:①当焦点在x轴上时有:②当焦点在y轴上时有:∴求得双曲线的离心率2或.故选:A.【点睛】本小题主要考查直线与圆的位置关系、双曲线的简单性质等基础知识,考查运算求解能力,考查数形结合思想.解题的关键是:由圆的切线求得直线的方程,再由双曲线中渐近线的方程的关系建立等式,从而解出双曲线的离心率的值.此题易忽视两解得出错误答案.2、B【解析】利用等差数列性质,若,则求出,再利用等差数列前项和公式得【详解】,由等差数列性质,若,则得,解:因为.......