电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

广东茂名十七中2024届高考数学必刷试卷含解析.doc

广东茂名十七中2024届高考数学必刷试卷含解析.doc_第1页
1/24
广东茂名十七中2024届高考数学必刷试卷含解析.doc_第2页
2/24
广东茂名十七中2024届高考数学必刷试卷含解析.doc_第3页
3/24
广东茂名十七中2024届高考数学必刷试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.过抛物线的焦点的直线交该抛物线于,两点,为坐标原点.若,则直线的斜率为()A.B.C.D.2.在平行四边形中,若则()A.B.C.D.3.已知,,,,.若实数,满足不等式组,则目标函数()B.有最大值,有最小值A.有最大值,无最小值D.无最大值,无最小值C.无最大值,有最小值=1(a>b>0)上,点P在第一象限,点P关于原点O的对称点为A,点P关于x轴的对4.已知点P在椭圆τ:称点为Q,设,直线AD与椭圆τ的另一个交点为B,若PA⊥PB,则椭圆τ的离心率e=()A.5.在正方体B.C.D.中,点,,分别为棱,,的中点,给出下列命题:①;②;③平面;④和成角为.正确命题的个数是()A.0B.1C.2D.36.设是双曲线的左、右焦点,若双曲线右支上存在一点,使(为坐标原点),且,则双曲线的离心率为()A.B.C.D.7.是抛物线上一点,是圆关于直线的对称圆上的一点,则最小值是()A.B.C.D.8.在区间上随机取一个数,使得成立的概率为等差数列的公差,且,若,则的最小值为()C.10D.11A.8B.9,若,则()9.已知向量,A.B.C.D.10.集合的子集的个数是()A.211.设函数B.3C.4D.8时,的定义域为,满足,且当.若对任意,都有,则的取值范围是().A.B.C.D.12.已知命题:“关于的方程有实根”,若为真命题的充分不必要条件为,则实数的取值范围是()A.B.C.D.这5个点中任选3个点,则这3个点不共线的概率为_二、填空题:本题共4小题,每小题5分,共20分。13.已知为矩形的对角线的交点,现从_______.14.设平面向量与的夹角为,且,,则的取值范围为______.15.设向量,,且,则_________.16.已知全集,集合则_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数其中(Ⅰ)若曲线在点处切线的倾斜角为,求的值;(Ⅱ)已知导函数在区间上存在零点,证明:当时,.18.(12分)已知函数.(1)若在处导数相等,证明:;(2)若对于任意,直线与曲线都有唯一公共点,求实数的取值范围.19.(12分)已知椭圆的焦距为2,且过点.(1)求椭圆的方程;(2)设为的左焦点,点为直线上任意一点,过点作的垂线交于两点,(ⅰ)证明:平分线段(其中为坐标原点);(ⅱ)当取最小值时,求点的坐标.20.(12分)如图所示,在四棱锥中,平面,底面ABCD满足AD∥BC,,,E为AD的中点,AC与BE的交点为O.(1)设H是线段BE上的动点,证明:三棱锥的体积是定值;(2)求四棱锥的体积;(3)求直线BC与平面PBD所成角的余弦值.21.(12分)已知,,求证:(1);(2).22.(10分)已知椭圆的长轴长为,离心率(1)求椭圆的方程;(2)设分别为椭圆与轴正半轴和轴正半轴的交点,是椭圆上在第一象限的一点,直线与轴交于点,直线与轴交于点,问与面积之差是否为定值?说明理由.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据抛物线的定义,结合,求出的坐标,然后求出的斜率即可.【详解】解:抛物线的焦点,准线方程为,设,则,故,此时,即.则直线的斜率.故选:D.【点睛】本题考查了抛物线的定义,直线斜率公式,属于中档题.2、C【解析】由,,利用平面向量的数量积运算,先求得利用平行四边形的性质可得结果.【详解】如图所示,平行四边形中,,,,,因为,所以,,所以,故选C.【点睛】本题主要考查向量的几何运算以及平面向量数量积的运算法则,属于中档题.向量的运算有两种方法:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和).3、B【解析】判断直线与纵轴交点的位置,画出可行解域,即可判断出...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

广东茂名十七中2024届高考数学必刷试卷含解析.doc

您可能关注的文档

确认删除?