广西田阳高中2024届高三第二次联考数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的定义域为()A.[,3)∪(3,+∞)B.(-∞,3)∪(3,+∞)C.[,+∞)D.(3,+∞)2.已知且,函数,若,则()A.2B.C.D.3.已知向量,且,则等于()A.4B.3C.2D.14.已知双曲线的左、右焦点分别为,,P是双曲线E上的一点,且.若直线与双曲线E的渐近线交于点M,且M为的中点,则双曲线E的渐近线方程为()A.B.C.D.5.已知不重合的平面和直线,则“”的充分不必要条件是()A.内有无数条直线与平行B.且C.且D.内的任何直线都与平行6.下列函数中,既是奇函数,又在上是增函数的是().A.B.C.D.7.某几何体的三视图如图所示,则该几何体的最长棱的长为()A.B.C.D.8.已知为一条直线,为两个不同的平面,则下列说法正确的是()A.若,则B.若,则C.若,则D.若,则9.2019年10月17日是我国第6个“扶贫日”,某医院开展扶贫日“送医下乡”医疗义诊活动,现有五名医生被分配到四所不同的乡镇医院中,医生甲被指定分配到医院,医生乙只能分配到医院或医院,医生丙不能分配到医生甲、乙所在的医院,其他两名医生分配到哪所医院都可以,若每所医院至少分配一名医生,则不同的分配方案共有()A.18种B.20种C.22种D.24种10.已知集合,则等于()A.B.C.D.11.如图所示的程序框图输出的是126,则①应为()A.B.C.D.,则()12.设等差数列的前项和为,若D.7A.10B.9C.8二、填空题:本题共4小题,每小题5分,共20分。13.若,则______.14.若复数满足,其中是虚数单位,是的共轭复数,则________.15.给出以下式子:①tan25°+tan35°tan25°tan35°;②2(sin35°cos25°+cos35°cos65°);③其中,结果为的式子的序号是_____.16.已知双曲线的左、右焦点分别为为双曲线上任一点,且的最小值为,则该双曲线的离心率是__________.(a>b>0)的离心率为.且经过点(1,三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在平面直角坐标系xOy中,已知椭圆C:),A,B分别为椭圆C的左、右顶点,过左焦点F的直线l交椭圆C于D,E两点(其中D在x轴上方).(1)求椭圆C的标准方程;(2)若△AEF与△BDF的面积之比为1:7,求直线l的方程.18.(12分)已知,函数.(1)若,求的单调递增区间;(2)若,求的值.19.(12分)已知函数.(1)若函数不存在单调递减区间,求实数的取值范围;(2)若函数的两个极值点为,,求的最小值.20.(12分)设函数.(1)当时,求不等式的解集;(2)若存在,使得不等式对一切恒成立,求实数的取值范围.21.(12分)如图,四棱锥,侧面是边长为2的正三角形,且与底面垂直,底面是的菱形,为棱上的动点,且.的平面角余弦值为.(I)求证:为直角三角形;(II)试确定的值,使得二面角22.(10分)已知抛物线E:y2=2px(p>0),焦点F到准线的距离为3,抛物线E上的两个动点A(x1,y1)和B(x2,y2),其中x1≠x2且x1+x2=1.线段AB的垂直平分线与x轴交于点C.(1)求抛物线E的方程;(2)求△ABC面积的最大值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据幂函数的定义域与分母不为零列不等式组求解即可.【详解】因为函数,解得且;函数的定义域为,故选A.【点睛】定义域的三种类型及求法:(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解;(2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解;(3)若已知函数的定义域为,则函数的定义域由不等式求出.2、C【解...