广西百色市普通高中2023-2024学年高三六校第一次联考数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知平面向量满足与的夹角为,且,则实数的值为()A.B.C.D.2.某学校为了调查学生在课外读物方面的支出情况,抽取了一个容量为的样本,其频率分布直方图如图所示,其中支出在(单位:元)的同学有34人,则的值为()A.100B.1000C.90D.903.已知函数)在区间(,且上的值域为,则()A.B.C.或D.或44.将函数的图象沿轴向左平移个单位长度后,得到函数的图象,则“”是“是偶函数”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.设,均为非零的平面向量,则“存在负数,使得”是“”的A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件6.1777年,法国科学家蒲丰在宴请客人时,在地上铺了一张白纸,上面画着一条条等距离的平行线,而他给每个客人发许多等质量的,长度等于相邻两平行线距离的一半的针,让他们随意投放.事后,蒲丰对针落地的位置进行统计,发现共投针2212枚,与直线相交的有704枚.根据这次统计数据,若客人随意向这张白纸上投放一根这样的针,则针落地后与直线相交的概率约为()A.B.C.D.7.设,其中a,b是实数,则()A.1B.2C.D.8.已知集合U={1,2,3,4,5,6},A={2,4},B={3,4},则=()A.{3,5,6}B.{1,5,6}C.{2,3,4}D.{1,2,3,5,6}9.半正多面体(semiregularsolid)亦称“阿基米德多面体”,是由边数不全相同的正多边形为面的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形为面的半正多面体.如图所示,图中网格是边长为1的正方形,粗线部分是某二十四等边体的三视图,则该几何体的体积为()A.B.C.D.10.已知F为抛物线y2=4x的焦点,过点F且斜率为1的直线交抛物线于A,B两点,则FA﹣FB的值等于()A.B.8C.D.411.设集合,,若,则的取值范围是()A.B.C.D.12.已知Sn为等比数列{an}的前n项和,a5=16,a3a4=﹣32,则S8=()A.﹣21B.﹣24C.85D.﹣85二、填空题:本题共4小题,每小题5分,共20分。13.某种赌博每局的规则是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金;随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金.若随机变量ξ1和ξ2分别表示赌客在一局赌博中的赌金和奖金,则D(ξ1)=_____,E(ξ1)﹣E(ξ2)=_____.14.小李参加有关“学习强国”的答题活动,要从4道题中随机抽取2道作答,小李会其中的三道题,则抽到的2道题小李都会的概率为_____.15.设实数满足约束条件,则的最大值为______.16.已知双曲线(a>0,b>0)的一条渐近线方程为,则该双曲线的离心率为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。,椭圆E:()17.(12分)如图,在平面直角坐标系中,已知圆C:的右顶点A在圆C上,右准线与圆C相切.(1)求椭圆E的方程;时,求直线l的方程.(2)设过点A的直线l与圆C相交于另一点M,与椭圆E相交于另一点N.当18.(12分)已知函数,.(1)若函数在上单调递减,且函数在上单调递增,求实数的值;(2)求证:(,且).19.(12分)已知数列的前n项和为,且n、、成等差数列,.(1)证明数列是等比数列,并求数列的通项公式;(2)若数列中去掉数列的项后余下的项按原顺序组成数列,求的值.20.(12分)已知函数.(1)若在处取得极值,求的值;(2)求在区间上的最小值;(3)在(1)的条件下,若,求证:当时,恒有成立.21.(12分)已知椭圆的离心率为,且过点.(Ⅰ)求椭...