日喀则市2024年高三考前热身数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知与函数和都相切,则不等式组所确定的平面区域在内的面积为()A.B.C.D.2.已知正方体的棱长为,,,分别是棱,,的中点,给出下列四个命题:①;②直线与直线所成角为;③过,,三点的平面截该正方体所得的截面为六边形;④三棱锥的体积为.其中,正确命题的个数为()A.B.C.D.3.设a,b,c为正数,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不修要条件4.已知数列满足:)若正整数使得成立,则()C.18D.19A.16B.175.为研究某咖啡店每日的热咖啡销售量和气温之间是否具有线性相关关系,统计该店2017年每周六的销售量及当天气温得到如图所示的散点图(轴表示气温,轴表示销售量),由散点图可知与的相关关系为()A.正相关,相关系数的值为B.负相关,相关系数的值为C.负相关,相关系数的值为D.正相关,相关负数的值为6.已知复数满足,则的值为()A.B.C.D.27.已知双曲线的左、右焦点分别为,圆与双曲线在第一象限内的交点为M,若.则该双曲线的离心率为A.2B.3C.D.8.若双曲线的离心率为,则双曲线的焦距为()A.B.C.6D.89.在平面直角坐标系中,已知是圆上两个动点,且满足,设到直线的距离之和的最大值为,若数列的前项和恒成立,则实数的取值范围是()A.B.C.D.10.某三棱锥的三视图如图所示,网格纸上小正方形的边长为,则该三棱锥外接球的表面积为()A.B.C.D.11.为双曲线的左焦点,过点的直线与圆交于、两点,(在、之间)与双曲线在第一象限的交点为,为坐标原点,若,且,则双曲线的离心率为()A.B.C.D.12.如图,正三棱柱各条棱的长度均相等,为的中点,分别是线段和线段的动点(含端点),且满足,当运动时,下列结论中不正确的是A.在内总存在与平面平行的线段B.平面平面C.三棱锥的体积为定值D.可能为直角三角形二、填空题:本题共4小题,每小题5分,共20分。13.在的展开式中的系数为,则_______.14.已知函数f(x)=若关于x的方程f(x)=kx有两个不同的实根,则实数k的取值范围是________.15.设等比数列的前项和为,若,则数列的公比是.16.函数与的图象上存在关于轴的对称点,则实数的取值范围为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。,已知,(1)求数列的首17.(12分)设数列是等比数列,项和公比;(2)求数列的通项公式.18.(12分)在平面直角坐标系中,曲线的参数方程为(是参数),以原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.(1)求直线与曲线的普通方程,并求出直线的倾斜角;(2)记直线与轴的交点为是曲线上的动点,求点的最大距离.19.(12分)如图,在四棱锥中,平面,四边形为正方形,点为线段上的点,过三点的平面与交于点.将①,②,③中的两个补充到已知条件中,解答下列问题:(1)求平面将四棱锥分成两部分的体积比;(2)求直线与平面所成角的正弦值.20.(12分)已知函数,(1)求函数的单调区间;(2)当时,判断函数,()有几个零点,并证明你的结论;(3)设函数,若函数在为增函数,求实数的取值范围.,其中.21.(12分)已知(1)当时,设函数,求函数的极值.(2)若函数在区间上递增,求的取值范围;(3)证明:.22.(10分)某市计划在一片空地上建一个集购物、餐饮、娱乐为一体的大型综合园区,如图,已知两个购物广场的占地都呈正方形,它们的面积分别为13公顷和8公顷;美食城和欢乐大世界的占地也都呈正方形,分别记它们的面积为公顷和公顷;由购物广场、美食城和欢乐大世界围成的两块公共绿地都呈三角形,分别记它们的面积为公顷和公...