江苏省13市2024年高三下学期联考数学试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,若函数在区间上有三个零点,则实数的取值范围是()A.B.C.D.2.已知双曲线()的渐近线方程为,则()A.B.C.D.3.已知函数是奇函数,则的值为()A.-10B.-9C.-7D.1()4.已知的垂心为,且是的中点,则A.14B.12C.10D.85.已知实数满足约束条件,则的最小值是A.B.C.1D.4上任意一点,是线段上的点,且6.设为坐标原点,是以为焦点的抛物线,则直线的斜率的最大值为()A.B.C.D.17.设为锐角,若,则的值为()A.B.C.D.8.已知集合,集合,若,则()A.B.C.D.9.设是定义在实数集上的函数,满足条件是偶函数,且当时,,则,,的大小关系是()A.B.C.D.10.已知集合,集合,则等于()A.B.C.D.11.已知向量满足,且与的夹角为,则()A.B.C.D.12.已知椭圆:的左、右焦点分别为,,过的直线与轴交于点,线段与交于点.若,则的方程为()A.B.C.D..则不等式二、填空题:本题共4小题,每小题5分,共20分。13.已知函数为上的奇函数,满足的解集为________.14.变量满足约束条件,则目标函数的最大值是____.15.设为偶函数,且当时,;当时,.关于函数的零点,有下列三个命题:①当时,存在实数m,使函数恰有5个不同的零点;②若,函数的零点不超过4个,则;③对,,函数恰有4个不同的零点,且这4个零点可以组成等差数列.其中,正确命题的序号是_______.16.已知复数(为虚数单位),则的共轭复数是_____,_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知点是抛物线的顶点,,是上的两个动点,且.(1)判断点是否在直线上?说明理由;(2)设点是△的外接圆的圆心,点到轴的距离为,点,求的最大值.18.(12分)已知椭圆的离心率为,且以原点O为圆心,椭圆C的长半轴长为半径的圆与直线相切.(1)求椭圆的标准方程;(2)已知动直线l过右焦点F,且与椭圆C交于A、B两点,已知Q点坐标为,求的值.19.(12分)在①,②,③这三个条件中任选一个,补充在下面问题中,求的面积的值(或最大值).已知的内角,,所对的边分别为,,,三边,,与面积满足关系式:,且,求的面积的值(或最大值).20.(12分)设函数f(x)=x﹣a+x(a>0).(1)若不等式f(x)﹣x≥4x的解集为{xx≤1},求实数a的值;(2)证明:f(x).21.(12分)(Ⅰ)证明:;(Ⅱ)证明:();(Ⅲ)证明:.22.(10分)已知函数,它的导函数为.(1)当时,求的零点;(2)当时,证明:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】令,可得.在坐标系内画出函数的图象(如图所示).当时,.由得.设过原点的直线与函数的图象切于点,则有,解得.所以当直线与函数的图象切时.又当直线经过点时,有,解得.结合图象可得当直线与函数的图象有3个交点时,实数的取值范围是.即函数在区间上有三个零点时,实数的取值范围是.选D.点睛:已知函数零点的个数(方程根的个数)求参数值(取值范围)的方法(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解,对于一些比较复杂的函数的零点问题常用此方法求解.2、A【解析】根据双曲线方程(),确定焦点位置,再根据渐近线方程得到求解.【详解】因为双曲线(),所以,又因为渐近线方程为,所以,所以.故选:A.【点睛】本题主要考查双曲线的几何性质,还考查了运算求解的能力,属于基础题.3、B【解析】根据分段函数表达式,先求得的值,然后结合的奇...