江苏省南京市示范名校2024届高考数学三模试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.《九章算术》勾股章有一“引葭赴岸”问题“今有饼池径丈,葭生其中,出水两尺,引葭赴岸,适与岸齐,问水深,葭各几何?”,其意思是:有一个直径为一丈的圆柱形水池,池中心生有一颗类似芦苇的植物,露出水面两尺,若把它引向岸边,正好与岸边齐,问水有多深,该植物有多高?其中一丈等于十尺,如图若从该葭上随机取一点,则该点取自水下的概率为()A.B.C.D.2.已知,满足,且的最大值是最小值的4倍,则的值是()A.4B.C.D.3.复数()A.B.C.0D.4.数列满足:,则数列前项的和为A.B.C.D.5.若不等式对恒成立,则实数的取值范围是()A.B.C.D.6.设,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.已知数列为等比数列,若,且,则()A.B.或C.D.8.函数(),当时,的值域为,则的范围为()A.B.C.D.9.若执行如图所示的程序框图,则输出的值是()A.B.C.D.410.中,角的对边分别为,若,,,则的面积为()A.B.C.D.11.设函数若关于的方程有四个实数解,其中,则的取值范围是()A.B.C.D.12.已知向量,,=(1,),且在方向上的投影为,则等于()A.2B.1C.D.0有3个不同的零点x1,x2,x3(x1<x2<x3),则二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,,若函数的取值范围是_________.14.设随机变量服从正态分布,若,则的值是______.15.已知向量,且向量与的夹角为_______.16.已知实数满足(为虚数单位),则的值为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)[选修4-5:不等式选讲]设函数.(1)求不等式的解集;(2)已知关于的不等式在上有解,求实数的取值范围.18.(12分)班主任为了对本班学生的考试成绩进行分析,决定从本班24名女同学,18名男同学中随机抽取一个容量为7的样本进行分析.(1)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可,不必计算出结果)(2)如果随机抽取的7名同学的数学,物理成绩(单位:分)对应如下表:学生序号1234567数学成绩60657075858790物理成绩70778085908693①若规定85分以上(包括85分)为优秀,从这7名同学中抽取3名同学,记3名同学中数学和物理成绩均为优秀的人数为,求的分布列和数学期望;②根据上表数据,求物理成绩关于数学成绩的线性回归方程(系数精确到0.01);若班上某位同学的数学成绩为96分,预测该同学的物理成绩为多少分?附:线性回归方程,其中,.768381252619.(12分)已知函数有两个极值点,.(1)求实数的取值范围;(2)证明:.20.(12分)已知椭圆,左、右焦点为,点为上任意一点,若的最大值为3,最小值为1.(1)求椭圆的方程;(2)动直线过点与交于两点,在轴上是否存在定点,使成立,说明理由.,将21.(12分)如图,平面四边形为直角梯形,,,绕着翻折到.(1)为上一点,且,当平面时,求实数的值;(2)当平面与平面所成的锐二面角大小为时,求与平面所成角的正弦.22.(10分)已知,,为正数,且,证明:(1);(2).参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由题意知:,,设,则,在中,列勾股方程可解得,然后由得出答案.【详解】解:由题意知:,,设,则,解得在中,列勾股方程得:所以从该葭上随机取一点,则该点取自水下的概率为故选C.【点睛】本题考查了几何概型中的长度型,属于基础题.2、D【解析】...