江苏省宿迁市高一年级2024届高三3月份第一次模拟考试数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,其图象关于直线对称,为了得到函数的图象,只需将函数的图象上的所有点()A.先向左平移个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变B.先向右平移个单位长度,再把所得各点横坐标缩短为原来的,纵坐标保持不变C.先向右平移个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变D.先向左平移个单位长度,再把所得各点横坐标缩短为原来的,纵坐标保持不变2.已知,,那么是的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.若,则实数的大小关系为()A.B.C.D.4.已知若在定义域上恒成立,则的取值范围是()A.B.C.D.5.如图,中,点D在BC上,,将沿AD旋转得到三棱锥,分别记,与平面ADC所成角为,,则,的大小关系是()A.B.C.,两种情况都存在D.存在某一位置使得6.某学校为了调查学生在课外读物方面的支出情况,抽取了一个容量为的样本,其频率分布直方图如图所示,其中支出在(单位:元)的同学有34人,则的值为()A.100B.1000C.90D.90有且只有一个实数根,则实数的取值范围是(7.已知函数,若关于的方程)B.A.D.C.8.复数的共轭复数记作,已知复数对应复平面上的点,复数:满足.则等于()D.A.B.C.9.函数在上单调递增,则实数的取值范围是()A.B.C.D.10.已知集合,,则A.B.C.D.11.点为棱长是2的正方体的内切球球面上的动点,点为的中点,若满足,则动点的轨迹的长度为()A.B.C.D.12.已知的展开式中第项与第项的二项式系数相等,则奇数项的二项式系数和为().A.B.C.D.______.二、填空题:本题共4小题,每小题5分,共20分。13.若随机变量的分布列如表所示,则______,-10114.如图是一个算法的伪代码,运行后输出的值为___________.15.已知关于x的不等式(ax﹣a2﹣4)(x﹣4)>0的解集为A,且A中共含有n个整数,则当n最小时实数a的值为_____.16.从甲、乙等8名志愿者中选5人参加周一到周五的社区服务,每天安排一人,每人只参加一天.若要求甲、乙两人至少选一人参加,且当甲、乙两人都参加时,他们参加社区服务的日期不相邻,那么不同的安排种数为______________.(用数字作答)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知曲线的参数方程为为参数,曲线的参数方程为为参数).(1)求与的普通方程;(2)若与相交于,两点,且,求的值.18.(12分)已知函数(1)若函数在处取得极值1,证明:(2)若恒成立,求实数的取值范围.19.(12分)已知的图象在处的切线方程为.(1)求常数的值;(2)若方程在区间上有两个不同的实根,求实数的值.20.(12分)某工厂的机器上有一种易损元件A,这种元件在使用过程中发生损坏时,需要送维修处维修.工厂规定当日损坏的元件A在次日早上8:30之前送到维修处,并要求维修人员当日必须完成所有损坏元件A的维修工作.每个工人独立维修A元件需要时间相同.维修处记录了某月从1日到20日每天维修元件A的个数,具体数据如下表:日期1日2日3日4日5日6日7日8日9日10日元件A个91512181218992412数日期11日12日13日14日15日16日17日18日19日20日元件A个12241515151215151524数从这20天中随机选取一天,随机变量X表示在维修处该天元件A的维修个数.(Ⅰ)求X的分布列与数学期望;(Ⅱ)若a,b,且b-a=6,求最大值;(Ⅲ)目前维修处有两名工人从事维修工作,为使每个维修工人每天维修元件A的个数的数学期望不超过4个,至少需要增加几名维修工人?(只需写出结论)21.(12分)已知函数.(1)若在上单调递...