江苏省扬中等七校2023-2024学年高考数学必刷试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知变量的几组取值如下表:12347若与线性相关,且,则实数()A.B.C.D.2.若双曲线:绕其对称中心旋转后可得某一函数的图象,则的离心率等于()A.B.C.2或D.2或3.已知为抛物线的焦点,点在上,若直线与的另一个交点为,则()A.B.C.D.4.在中,内角所对的边分别为,若依次成等差数列,则()A.依次成等差数列B.依次成等差数列C.依次成等差数列D.依次成等差数列5.如图,圆锥底面半径为,体积为,、是底面圆的两条互相垂直的直径,是母线的中点,已知过与的平面与圆锥侧面的交线是以为顶点的抛物线的一部分,则该抛物线的焦点到圆锥顶点的距离等于()A.B.1C.D.6.设f(x)是定义在R上的偶函数,且在(0,+∞)单调递减,则()A.B.C.D.7.平行四边形中,已知,,点、分别满足,,且,则向量在上的投影为()A.2B.C.D.8.已知复数z满足,则在复平面上对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限9.设分别为双曲线的左、右焦点,过点作圆的切线,与双曲线的左、右两支分别交于点,若,则双曲线渐近线的斜率为()A.B.C.D.10.已知函数,若关于的方程有4个不同的实数根,则实数的取值范围为()D.A.B.C.11.已知函数在上有两个零点,则的取值范围是()A.B.C.D.12.如图是二次函数的部分图象,则函数的零点所在的区间是()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.已知关于x的不等式(ax﹣a2﹣4)(x﹣4)>0的解集为A,且A中共含有n个整数,则当n最小时实数a的值为_____.14.记为数列的前项和.若,则______.15.设等比数列的前项和为,若,,则__________.16.函数f(x)=x2﹣xlnx的图象在x=1处的切线方程为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知三棱锥中,为等腰直角三角形,,设点为中点,点为中点,点为上一点,且.(1)证明:平面;(2)若,求直线与平面所成角的正弦值.18.(12分)追求人类与生存环境的和谐发展是中国特色社会主义生态文明的价值取向.为了改善空气质量,某城市环保局随机抽取了一年内100天的空气质量指数()的检测数据,结果统计如下:空气质量优良轻度污染中度污染重度污染严重污染18272510天数614(1)从空气质量指数属于,的天数中任取3天,求这3天中空气质量至少有2天为优的概率;(2)已知某企业每天的经济损失(单位:元)与空气质量指数的关系式为,试估计该企业一个月(按30天计算)的经济损失的数学期望.19.(12分)如图,在四棱锥中,底面,,,,,点为棱的中点.(1)证明::(2)求直线与平面所成角的正弦值;(3)若为棱上一点,满足,求二面角的余弦值.20.(12分)已知函数(I)若讨论的单调性;,存在,使得函数(Ⅱ)若,且对于函数的图象上两点的图象在处的切线.求证:.21.(12分)已知函数.(Ⅰ)求在点处的切线方程;(Ⅱ)已知在上恒成立,求的值.(Ⅲ)若方程有两个实数根,且,证明:.22.(10分)已知椭圆的左,右焦点分别为,,,M是椭圆E上的一个动点,且的面积的最大值为.(1)求椭圆E的标准方程,(2)若,,四边形ABCD内接于椭圆E,,记直线AD,BC的斜率分别为,,求证:为定值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】求出,把坐标代入方程可求得.【详解】据题意,得,所以,所以.故选:B.可计算参数值.【点睛】本题考查线性回归直线方程,由性质线性回归直线一定过中心点2、C【解析】由双曲线的几何性质与函数的概念可知,此双曲线的...