江苏省扬州市江都区大桥、丁沟、仙城中学2023-2024学年高考仿真卷数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知复数满足,则=()A.B.C.D.2.已知函数,若函数在上有3个零点,则实数的取值范围为()A.B.C.D.3.为了加强“精准扶贫”,实现伟大复兴的“中国梦”,某大学派遣甲、乙、丙、丁、戊五位同学参加三个贫困县的调研工作,每个县至少去1人,且甲、乙两人约定去同一个贫困县,则不同的派遣方案共有()A.24B.36C.48D.644.函数的图象大致为A.B.C.D.5.函数(或)的图象大致是()A.B.C.D.6.已知函数,若关于的方程有4个不同的实数根,则实数的取值范围为()D.A.B.C.7.若实数满足不等式组,则的最大值为()D.2A.B.C.38.二项式展开式中,项的系数为()A.B.C.D.9.已知直线是曲线的切线,则()A.或1B.或2C.或D.或110.设函数在上可导,其导函数为,若函数在处取得极大值,则函数的图象可能是()A.B.C.D.11.若复数,其中为虚数单位,则下列结论正确的是()A.的虚部为B.C.的共轭复数为D.为纯虚数12.已知,如图是求的近似值的一个程序框图,则图中空白框中应填入A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.五声音阶是中国古乐基本音阶,故有成语“五音不全”.中国古乐中的五声音阶依次为:宫、商、角、徵、羽,如果把这五个音阶全用上,排成一个五个音阶的音序,且要求宫、羽两音阶不相邻且在角音阶的同侧,可排成______种不同的音序.14.六位同学坐在一排,现让六位同学重新坐,恰有两位同学坐自己原来的位置,则不同的坐法有________种(用数字回答).15.已知,,,,则______.16.已知向量,,若满足,且方向相同,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)当时,证明,在恒成立;(2)若在处取得极大值,求的取值范围.18.(12分)已知数列的前项和和通项满足.的前项和.(1)求数列的通项公式;(2)已知数列中,,,求数列19.(12分)已知函数.(Ⅰ)求的值;(Ⅱ)若,且,求的值.20.(12分)已知动圆恒过点,且与直线相切.(1)求圆心的轨迹的方程;的平行线交轨迹于,两点,交轨迹在处的切线于点,问:(2)设是轨迹上横坐标为2的点,是否存在实常数使,若存在,求出的值;若不存在,说明理由.21.(12分)已知数列的前项和为,且满足.(1)求数列的通项公式;(2)若,,且数列前项和为,求的取值范围.22.(10分)已知变换将平面上的点,分别变换为点,.设变换对应的矩阵为.(1)求矩阵;(2)求矩阵的特征值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】利用复数的代数运算法则化简即可得到结论.【详解】由,得,所以,.故选:B.【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,属于基础题.2、B【解析】根据分段函数,分当,,将问题转化为的零点问题,用数形结合的方法研究.【详解】当时,,令,在是增函数,时,有一个零点,当时,,令当时,,在上单调递增,当时,,在上单调递减,所以当时,取得最大值,因为在上有3个零点,所以当时,有2个零点,如图所示:所以实数的取值范围为综上可得实数的取值范围为,故选:B【点睛】本题主要考查了函数的零点问题,还考查了数形结合的思想和转化问题的能力,属于中档题.3、B【解析】根据题意,有两种分配方案,一是,二是,然后各自全排列,再求和.【详解】当按照进行分配时,则有种不同的方案;当按照进行...