江苏省沛县中学2024年高考数学一模试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.三棱柱中,底面边长和侧棱长都相等,,则异面直线与所成角的余弦值为()A.B.C.D.2.已知向量,且,则m=()A.−8C.6B.−63.已知函数D.8围为()A.,,若方程恰有三个不相等的实根,则的取值范B.C.D.4.正三棱锥底面边长为3,侧棱与底面成角,则正三棱锥的外接球的体积为()A.B.C.D.5.已知函数,若,则的取值范围是()A.B.C.D.6.在中,角、、所对的边分别为、、,若,则()A.B.C.D.7.若双曲线:()的一个焦点为,过点的直线与双曲线交于、两点,且的中点为,则的方程为()A.B.C.D.8.已知双曲线满足以下条件:①双曲线E的右焦点与抛物线的焦点F重合;②双曲线E与过点的幂函数的图象交于点Q,且该幂函数在点Q处的切线过点F关于原点的对称点.则双曲线的离心率是()A.B.C.D.9.记单调递增的等比数列的前项和为,若,,则()D.A.B.C.10.定义在上的函数满足,则()A.-1B.0C.1D.211.已知菱形的边长为2,,则()A.4B.6C.D.12.已知偶函数在区间内单调递减,,,,则,,满足()A.B.C.D.的最大值为______.二、填空题:本题共4小题,每小题5分,共20分。13.设,满足约束条件,则14.的展开式中的常数项为__________.15.已知一个正四棱锥的侧棱与底面所成的角为,侧面积为,则该棱锥的体积为__________.16.现有5人要排成一排照相,其中甲与乙两人不相邻,且甲不站在两端,则不同的排法有____种.(用数字作答)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,(1)证明:在区间单调递减;(2)证明:对任意的有.18.(12分)如图,直线与抛物线交于两点,直线与轴交于点,且直线恰好平分.(1)求的值;(2)设是直线上一点,直线交抛物线于另一点,直线交直线于点,求的值.19.(12分)已知函数.(1)讨论的单调性;(2)若恒成立,求实数的取值范围.20.(12分)在中,角的对边分别为,且,.(1)求的值;(2)若求的面积.21.(12分)为了加强环保知识的宣传,某学校组织了垃圾分类知识竟赛活动.活动设置了四个箱子,分别写有“厨余垃圾”、“有害垃圾”、“可回收物”、“其它垃圾”;另有卡片若干张,每张卡片上写有一种垃圾的名称.每位参赛选手从所有卡片中随机抽取张,按照自己的判断将每张卡片放入对应的箱子中.按规则,每正确投放一张卡片得分,投放错误得分.比如将写有“废电池”的卡片放入写有“有害垃圾”的箱子,得分,放入其它箱子,得分.从所有参赛选手中随机抽取人,将他们的得分按照、、、、分组,绘成频率分布直方图如图:(1)分别求出所抽取的人中得分落在组和内的人数;(2)从所抽取的人中得分落在组的选手中随机选取名选手,以表示这名选手中得分不超过分的人数,求的分布列和数学期望.22.(10分)在直角坐标系xOy中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系;曲线C1的普通方程为(x-1)2+y2=1,曲线C2的参数方程为(θ为参数).(Ⅰ)求曲线C1和C2的极坐标方程:(Ⅱ)设射线θ=(ρ>0)分别与曲线C1和C2相交于A,B两点,求AB的值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】设,,,根据向量线性运算法则可表示出和;分别求解出和,,根据向量夹角的求解方法求得,即可得所求角的余弦值.【详解】设棱长为1,,,由题意得:,,,又即异面直线与所成角的余弦值为:本题正确选项:【点睛】本题考查异面直线所成角的求解,关键是能够通过向量的线性运算、数量积运算将问题转化为向量夹角的求解问题.2、D【解析】由已知向量的坐标求出的坐标,再由向量垂直的坐标运算得答案.【...