江苏省海州高级中学2023-2024学年高考压轴卷数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.复数,若复数在复平面内对应的点关于虚轴对称,则等于()A.B.C.D.2.给出下列三个命题:”的否定;①“②在中,“”是“”的充要条件;③将函数的图象向左平移个单位长度,得到函数的图象.其中假命题的个数是()A.0B.1C.2D.3的图象可能是()3.函数A.B.C.D.4.已知函数,,则的极大值点为()A.B.C.D.5.已知七人排成一排拍照,其中甲、乙、丙三人两两不相邻,甲、丁两人必须相邻,则满足要求的排队方法数为().A.432B.576C.696D.9606.在四面体中,为正三角形,边长为6,,,,则四面体的体积为()A.B.C.24D.7.已知复数,则的虚部为()A.-18.已知函数B.C.1D.的解集为(),则不等式A.B.C.D.9.已知函数,若则()A.f(a)<f(b)<f(c)C.f(a)<f(c)<f(b)B.f(b)<f(c)<f(a)D.f(c)<f(b)<f(a)10.使得的展开式中含有常数项的最小的n为()A.B.C.D.11.等差数列的前项和为,若,,则数列的公差为()A.-2B.2C.4D.712.已知函数在上有两个零点,则的取值范围是()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.若x,y满足,则的最小值为________.14.设是公差不为0的等差数列的前n项和,且,则______.15.如图所示,平面BCC1B1⊥平面ABC,ABC=120,四边形BCC1B1为正方形,且AB=BC=2,则异面直线BC1与AC所成角的余弦值为_____.16.在平面直角坐标系xOy中,若圆C1:x2+(y-1)2=r2(r>0)上存在点P,且点P关于直线x-y=0的对称点Q在圆C2:(x-2)2+(y-1)2=1上,则r的取值范围是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设数列的前列项和为,已知.(1)求数列的通项公式;(2)求证:.18.(12分)在直角坐标系中,曲线的参数方程为(为参数),坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程和曲线的直角坐标方程;面积的最大值.(2)若曲线、交于、两点,是曲线上的动点,求19.(12分)已知椭圆的左,右焦点分别为,,,M是椭圆E上的一个动点,且的面积的最大值为.(1)求椭圆E的标准方程,(2)若,,四边形ABCD内接于椭圆E,,记直线AD,BC的斜率分别为,,求证:为定值.20.(12分)如图,己知圆和双曲线,记与轴正半轴、轴负半轴的公共点分别为、,又记与在第一、第四象限的公共点分别为、.(1)若,且恰为的左焦点,求的两条渐近线的方程;(2)若,且,求实数的值;(3)若恰为的左焦点,求证:在轴上不存在这样的点,使得..21.(12分)已知函数,,设.(1)当时,求函数的单调区间;(2)设方程(其中为常数)的两根分别为,,证明:(注:是的导函数)22.(10分)设函数.(1)若,时,在上单调递减,求的取值范围;(2)若,,,求证:当时,.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】先通过复数在复平面内对应的点关于虚轴对称,得到,再利用复数的除法求解.【详解】因为复数在复平面内对应的点关于虚轴对称,且复数,所以所以故选:A【点睛】本题主要考查复数的基本运算和几何意义,属于基础题.2、C【解析】结合不等式、三角函数的性质,对三个命题逐个分析并判断其真假,即可选出答案.【详解】对于命题①,因为,所以“”是真命题,故其否定是假命题,即①是假命题;对于命题②,充分性:中,若,则,由余弦函数的单调性可知,,即,即可得到,即充分性成立;必要性:中,,若,结合余弦函数的单调性可知,,即,可得到,即必要性成立.故命题②正确;对于命题③,将函数的图象向...