江苏省苏州十中2024年高考数学必刷试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,若所有点,所构成的平面区域面积为,则()A.B.C.1D.2.已知是定义在上的奇函数,当时,,则()A.B.2C.3D.3.已知数列是以1为首项,2为公差的等差数列,是以1为首项,2为公比的等比数列,设,,则当时,的最大值是()A.8B.9C.10D.114.已知命题p:直线a∥b,且b⊂平面α,则a∥α;命题q:直线l⊥平面α,任意直线m⊂α,则l⊥m.下列命题为真命题的是()B.p∨(非q)C.(非p)∧qD.p∧(非q)A.p∧q5.若的内角满足,则的值为()A.B.C.D.6.由曲线y=x2与曲线y2=x所围成的平面图形的面积为()A.1B.C.D.7.“且”是“”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既不充分也不必要条件8.一个超级斐波那契数列是一列具有以下性质的正整数:从第三项起,每一项都等于前面所有项之和(例如:1,3,4,8,16…).则首项为2,某一项为2020的超级斐波那契数列的个数为()A.3B.4C.5D.69.窗花是贴在窗纸或窗户玻璃上的剪纸,是中国古老的传统民间艺术之一,它历史悠久,风格独特,神兽人们喜爱.下图即是一副窗花,是把一个边长为12的大正方形在四个角处都剪去边长为1的小正方形后剩余的部分,然后在剩余部分中的四个角处再剪出边长全为1的一些小正方形.若在这个窗花内部随机取一个点,则该点不落在任何一个小正方形内的概率是()A.B.C.D.10.在中,在边上满足,为的中点,则().A.B.C.D.11.是正四面体的面内一动点,为棱中点,记与平面成角为定值,若点的轨迹为一段抛物线,则()A.B.C.D.12.已知函数,若关于的方程恰好有3个不相等的实数根,则实数的取值范围为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.已知在△ABC中,(2sin32°,2cos32°),(cos77°,﹣cos13°),则⋅_____,△ABC的面积为_____.14.设是公差不为0的等差数列的前项和,且,则______.15.一个算法的伪代码如图所示,执行此算法,最后输出的T的值为________.16.已知函数对于都有,且周期为2,当时,,则________________________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图1,四边形为直角梯形,,,,,,为线段上一点,满足,为的中点,现将梯形沿折叠(如图2),使平面平面.(1)求证:平面平面;(2)能否在线段上找到一点(端点除外)使得直线与平面所成角的正弦值为?若存在,试确定点的位置;若不存在,请说明理由.18.(12分)在中,.(1)求的值;(2)点为边上的动点(不与点重合),设,求的取值范围.19.(12分)已知函数()(1)函数在点处的切线方程为,求函数的极值;(2)当时,对于任意,当时,不等式恒成立,求出实数的取值范围.都是正数,且,.求证:.20.(12分)设.21.(12分)已知函数,不等式的解集为,求证:(1)求实数,的值;(2)若,,.22.(10分)已知.(1)当时,求不等式的解集;(2)若,,证明:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】依题意,可得,在上单调递增,于是可得在上的值域为,继而可得,解之即可.【详解】,因为,,解:所以,在上单调递增,则在上的值域为,因为所有点所构成的平面区域面积为,所以,解得,故选:D.【点睛】本题考查利用导数研究函数的单调性,理解题意,得到是关键,考查运算能力,属于中档题.时,2、A【解析】由奇函数定义求出和.【详解】因为是定义在上的奇函数,....