江西省南昌市省重点中学2024届高三第一次模拟考试数学试卷注意事项铅笔作答;第二部分必须用黑1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.半径为2的球内有一个内接正三棱柱,则正三棱柱的侧面积的最大值为()A.B.C.D.2.《周易》是我国古代典籍,用“卦”描述了天地世间万象变化.如图是一个八卦图,包含乾、坤、震、巽、坎、离、艮、兑八卦(每一卦由三个爻组成,其中“”表示一个阳爻,“”表示一个阴爻)若从八卦中任取两卦,这两卦的六个爻中恰有两个阳爻的概率为()A.B.C.D.3.已知集合,,若,则实数的值可以为()A.B.C.D.4.已知奇函数是上的减函数,若满足不等式组,则的最小值为()A.-4B.-2C.0D.45.函数的部分图象大致为()A.B.C.D.6.已知函数的图像与一条平行于轴的直线有两个交点,其横坐标分别为,则()A.B.C.D.7.已知实数,满足约束条件,则的取值范围是()A.B.C.D.8.在中,,,,点满足,则等于()A.10B.99.函数C.8D.7在上为增函数,则的值可以是()A.0B.C.D.10.若,,,则下列结论正确的是()A.B.C.D.11.在钝角中,角所对的边分别为,为钝角,若,则的最大值为()A.B.C.1D.12.复数满足,则()A.B.C.D.的最小值为__________.二、填空题:本题共4小题,每小题5分,共20分。13.已知,满足约束条件,则14.在△ABC中,a=3,,B=2A,则cosA=_____.15.已知函数,则过原点且与曲线相切的直线方程为____________.16.已知实数,满足约束条件则的最大值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,底面是矩形,四条侧棱长均相等.(1)求证:平面;(2)求证:平面平面.18.(12分)在极坐标系中,已知曲线C的方程为(),直线l的方程为.设直线l与曲线C相交于A,B两点,且,求r的值.19.(12分)已知椭圆的离心率为,且以原点O为圆心,椭圆C的长半轴长为半径的圆与直线相切.(1)求椭圆的标准方程;(2)已知动直线l过右焦点F,且与椭圆C交于A、B两点,已知Q点坐标为,求的值.20.(12分)已知()过点,且当时,函数取得最大值1.的图象向右平移个单位得到函数,求函数的表达式;(1)将函数(2)在(1)的条件下,函数,求在上的值域.21.(12分)如图,在三棱锥中,,,侧面为等边三角形,侧棱.(1)求证:平面平面;(2)求三棱锥外接球的体积.22.(10分)已知直线过椭圆的右焦点,且交椭圆于A,B两点,线段AB的中点是,面积的最大值.(1)求椭圆的方程;(2)过原点的直线l与线段AB相交(不含端点)且交椭圆于C,D两点,求四边形参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】设正三棱柱上下底面的中心分别为,底面边长与高分别为,利用,可得,进一步得到侧面积,再利用基本不等式求最值即可.【详解】如图所示.设正三棱柱上下底面的中心分别为,底面边长与高分别为,则,在中,,化为,,,当且仅当时取等号,此时.故选:B.【点睛】本题考查正三棱柱与球的切接问题,涉及到基本不等式求最值,考查学生的计算能力,是一道中档题.2、C【解析】分类讨论,仅有一个阳爻的有坎、艮、震三卦,从中取两卦;从仅有两个阳爻的有巽、离、兑三卦中取一个,再取没有阳爻的坤卦,计算满足条件的种数,利用古典概型即得解.【详解】由图可知,仅有一个阳爻的有坎、艮、震三卦,从中取两卦满足条件,其种数是;仅有两个阳爻的有巽、离、兑三卦,没有阳爻的是坤卦,此时取两卦满足条件的种数是,于是所求的概率.故选:C【点睛】本题考查了古典概型的应用,考查了学生综合分析,分类讨论,数学运算的能力,属于基础题.3、D【解析】由题意可得,根据,即可得出,从而求出结果.【详解】,且,,∴的值可以为...