江西省吉安市吉安县第三中学2023-2024学年高考冲刺押题(最后一卷)数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.2019年10月17日是我国第6个“扶贫日”,某医院开展扶贫日“送医下乡”医疗义诊活动,现有五名医生被分配到四所不同的乡镇医院中,医生甲被指定分配到医院,医生乙只能分配到医院或医院,医生丙不能分配到医生甲、乙所在的医院,其他两名医生分配到哪所医院都可以,若每所医院至少分配一名医生,则不同的分配方案共有()A.18种B.20种C.22种D.24种2.已知分别为双曲线的左、右焦点,过的直线与双曲线的左、右两支分别交于两点,若,则双曲线的离心率为()A.B.4C.2D.3.已知函数,若关于的不等式恰有1个整数解,则实数的最大值为()B.3C.5D.8的距离为,则A.24.设抛物线上一点到轴的距离为,到直线的最小值为()B.C.D.3A.25.已知变量的几组取值如下表:12347若与线性相关,且,则实数()A.B.C.D.6.复数的模为().A.B.1C.2D.7.已知命题p:“”是“”的充要条件;,,则()A.为真命题B.为真命题C.为真命题D.为假命题8.等腰直角三角形BCD与等边三角形ABD中,,,现将沿BD折起,则当直线AD与平面BCD所成角为时,直线AC与平面ABD所成角的正弦值为()A.B.C.D.9.已知复数(为虚数单位),则下列说法正确的是()A.的虚部为C.的共轭复数B.复数在复平面内对应的点位于第三象限10.已知函数D.()的最小值为0,则()A.B.C.D.11.已知的共轭复数是,且(为虚数单位),则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限12.给出下列四个命题:①若“且”为假命题,则﹑均为假命题;②三角形的内角是第一象限角或第二象限角;③若命题,,则命题,;④设集合,,则“”是“”的必要条件;其中正确命题的个数是()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.若函数恒成立,则实数的取值范围是_____.14.四边形中,,,,,则的最小值是______.15.已知两圆相交于两点,,若两圆圆心都在直线上,则的值是________________.16.设复数满足,则_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,平面四边形为直角梯形,,,,将绕着翻折到.(1)为上一点,且,当平面时,求实数的值;(2)当平面与平面所成的锐二面角大小为时,求与平面所成角的正弦.18.(12分)已知函数.(1)讨论的单调性;(2)若函数在上存在两个极值点,,且,证明.19.(12分)已知函数(Ⅰ)若,求曲线在点处的切线方程;(Ⅱ)若在上恒成立,求实数的取值范围;(Ⅲ)若数列的前项和,,求证:数列的前项和.20.(12分)选修44:坐标系与参数方程在平面直角坐标系xOy中,已知曲线C的参数方程为(α为参数).以直角坐标系原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为,点P为曲线C上的动点,求点P到直线l距离的最大值.21.(12分)年,山东省高考将全面实行“选”的模式(即:语文、数学、外语为必考科目,剩下的物理、化学、历史、地理、生物、政治六科任选三科进行考试).为了了解学生对物理学科的喜好程度,某高中从高一年级学生中随机抽取人做调查.统计显示,男生喜欢物理的有人,不喜欢物理的有人;女生喜欢物理的有人,不喜欢物理的有人.(1)据此资料判断是否有的把握认为“喜欢物理与性别有关”;(2)为了了解学生对选科的认识,年级决定召开学生座谈会.现从名男同学和名女同学(其中男女喜欢物理)中,选取名男同学和名女同学参加座谈会,记参加座谈会的人中喜欢物理的人数为,求的分布列及期望.,其中.22.(10分)已知,,函数的最小值为.(1)求证:;(...