电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

江西省宜春市樟树中学2023-2024学年高三下学期一模考试数学试题含解析.doc

江西省宜春市樟树中学2023-2024学年高三下学期一模考试数学试题含解析.doc_第1页
1/22
江西省宜春市樟树中学2023-2024学年高三下学期一模考试数学试题含解析.doc_第2页
2/22
江西省宜春市樟树中学2023-2024学年高三下学期一模考试数学试题含解析.doc_第3页
3/22
江西省宜春市樟树中学2023-2024学年高三下学期一模考试数学试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直三棱柱中,,,,则异面直线与所成的角的正弦值为().A.B.C.D.2.已知向量,,若,则()A.B.C.D.3.已知,,且是的充分不必要条件,则的取值范围是()A.4.已知函数B.C.D.的一条切线为,则的最小值为()A.B.C.D.5.已知x,y满足不等式组,则点所在区域的面积是()A.1B.2C.D.6.设集合B.A.则()C.D.7.已知函数.设,若对任意不相等的正数,,恒有,则实数a的取值范围是()B.A.D.;命题:,则有C.8.已知命题:任意,都有.则下列命题为真命题的是()A.B.C.D.9.函数(其中是自然对数的底数)的大致图像为()A.B.C.D.10.赵爽是我国古代数学家、天文学家,大约公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,又称“赵爽弦图”(以弦为边长得到的正方形是由个全等的直角三角形再加上中间的一个小正方形组成的,如图(1)),类比“赵爽弦图”,可类似地构造如图(2)所示的图形,它是由个全等的三角形与中间的一个小正六边形组成的一个大正六边形,设,若在大正六边形中随机取一点,则此点取自小正六边形的概率为()A.B.C.D.11.设是两条不同的直线,是两个不同的平面,下列命题中正确的是()A.若,,则B.若,,则C.若,,则D.若,,则12.已知复数满足(是虚数单位),则=()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.已知点是直线上的一点,将直线绕点逆时针方向旋转角,所得直线方程是,若将它继续旋转角,所得直线方程是,则直线的方程是______.14.若一个正四面体的棱长为1,四个顶点在同一个球面上,则此球的表面积为_________.15.已知全集,集合,则______.16.已知两点,,若直线上存在点满足,则实数满足的取值范围是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)棉花的纤维长度是评价棉花质量的重要指标,某农科所的专家在土壤环境不同的甲、乙两块实验地分别种植某品种的棉花,为了评价该品种的棉花质量,在棉花成熟后,分别从甲、乙两地的棉花中各随机抽取21根棉花纤维进行统计,结果如下表:(记纤维长度不低于311的为“长纤维”,其余为“短纤维”)纤维长度甲地(根数)34454乙地(根数)112116(1)由以上统计数据,填写下面列联表,并判断能否在犯错误概率不超过1.125的前提下认为“纤维长度与土壤环境有关系”.甲地乙地总计长纤维短纤维总计附:(1);(2)临界值表;1.151.1251.1111.1151.1111.112.7163.8415.1246.6357.87911.828(2)现从上述41根纤维中,按纤维长度是否为“长纤维”还是“短纤维”采用分层抽样的方法抽取8根进行检测,在这8根纤维中,记乙地“短纤维”的根数为,求的分布列及数学期望.18.(12分)在中,内角A,B,C的对边分别为a,b,c,且满足.(1)求B;(2)若,AD为BC边上的中线,当的面积取得最大值时,求AD的长.19.(12分)已知矩形中,,E,F分别为,的中点.沿将矩形折起,使,如图所示.设P、Q分别为线段,的中点,连接.(1)求证:平面;(2)求二面角的余弦值.20.(12分)在中,角,,所对的边分别是,,,且..(1)求的值;(2)若,求的取值范围.21.(12分)的内角、、所对的边长分别为、、,已知(1)求的值;(2)若,点是线段的中点,,求的面积.22.(10分)已知x,y,z均为正数.(1)若xy<1,证明:x+z⋅y+z>4xyz;(2)若=,求2xy⋅2yz⋅2xz的最小值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】设M,N,P分别为和的中点,得出的夹角为MN和NP夹角或其补角,根据中位线定理,结合余弦定理求...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

江西省宜春市樟树中学2023-2024学年高三下学期一模考试数学试题含解析.doc

您可能关注的文档

确认删除?