江西省稳派教育2024年高三第二次调研数学试卷注意事项铅笔作答;第二部分必须用黑1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.《周易》是我国古代典籍,用“卦”描述了天地世间万象变化.如图是一个八卦图,包含乾、坤、震、巽、坎、离、艮、兑八卦(每一卦由三个爻组成,其中“”表示一个阳爻,“”表示一个阴爻).若从含有两个及以上阳爻的卦中任取两卦,这两卦的六个爻中都恰有两个阳爻的概率为()A.B.C.D.2.命题“”的否定为()A.B.C.D.3.已知复数满足,其中为虚数单位,则().D.A.B.C.4.已知函数的图象与直线的相邻交点间的距离为,若定义,则函数,在区间内的图象是()A.B.C.D.5.执行如图所示的程序框图,若输出的结果为3,则可输入的实数值的个数为()A.1B.2C.3D.4D.第四象限6.已知复数z满足,则在复平面上对应的点在()A.第一象限B.第二象限C.第三象限7.设,是双曲线的左,右焦点,是坐标原点,过点作的一条渐近线的垂线,垂足为.若,则的离心率为()A.B.C.D.8.若,满足约束条件,则的最大值是()A.B.C.13D.9.如图是一个算法流程图,则输出的结果是()A.B.C.D.10.设x、y、z是空间中不同的直线或平面,对下列四种情形:①x、y、z均为直线;②x、y是直线,z是平面;③z是直线,x、y是平面;④x、y、z均为平面.其中使“且”为真命题的是()D.①②A.③④B.①③C.②③11.若双曲线的焦距为,则的一个焦点到一条渐近线的距离为()A.B.C.D.12.已知等差数列满足,公差,且成等比数列,则A.1B.2C.3D.4二、填空题:本题共4小题,每小题5分,共20分。13.在△ABC中,a=3,,B=2A,则cosA=_____.14.在平行四边形中,已知,,,若,,则____________.15.已知双曲线的一条渐近线为,且经过抛物线的焦点,则双曲线的标准方程为______.16.在中,,是的角平分线,设,则实数的取值范围是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)若,证明:当时,;(2)若在只有一个零点,求的值.18.(12分)如图,在等腰梯形中,AD∥BC,,,,,分别为,,的中点,以为折痕将折起,使点到达点位置(平面).(1)若为直线上任意一点,证明:MH∥平面;(2)若直线与直线所成角为,求二面角的余弦值.19.(12分)在中,设、、分别为角、、的对边,记的面积为,且.(1)求角的大小;(2)若,,求的值.20.(12分)选修4-2:矩阵与变换(本小题满分10分)已知矩阵A=(k≠0)的一个特征向量为α=,A的逆矩阵A-1对应的变换将点(3,1)变为点(1,1).求实数a,k的值.21.(12分)已知点,若点满足.(Ⅰ)求点的轨迹方程;(Ⅱ)过点的直线与(Ⅰ)中曲线相交于两点,为坐标原点,求△面积的最大值及此时直线的方程.22.(10分)本小题满分14分)已知曲线的极坐标方程为,以极点为原点,极轴为轴的非负半轴建立平面直角坐标系,直线的参数方程为(为参数),求直线被曲线截得的线段的长度参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】基本事件总数为个,都恰有两个阳爻包含的基本事件个数为个,由此求出概率.【详解】解:由图可知,含有两个及以上阳爻的卦有巽、离、兑、乾四卦,取出两卦的基本事件有(巽,离),(巽,兑),(巽,乾),(离,兑),(离,乾),(兑,乾)共个,其中符合条件的基本事件有(巽,离),(巽,兑),(离,兑)共个,所以,所求的概率.故选:B.【点睛】本题渗透传统文化,考查概率、计数原理等基本知识,考查抽象概括能力和应用意识,属于基础题.2、C【解析】套用命题的否定形式即可.【详解】命题“”的否定为“”,所以命题“”的否定为“”.故选:C【点睛】本题考查全称命题的...