江西省鄱阳县第一中学2024届高考冲刺数学模拟试题注意事项铅笔作答;第二部分必须用黑1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知椭圆的右焦点为F,左顶点为A,点P椭圆上,且,若,则椭圆的离心率为()A.B.C.D.2.设分别为双曲线的左、右焦点,过点作圆的切线,与双曲线的左、右两支分别交于点,若,则双曲线渐近线的斜率为()A.B.C.D.3.复数(i是虚数单位)在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限4.命题:存在实数,对任意实数,使得恒成立;:,为奇函数,则下列命题是真命题的是()A.B.C.D.5.各项都是正数的等比数列的公比,且成等差数列,则的值为()A.B.C.D.或6.函数的图象的大致形状是()A.B.C.D.7.已知复数,(为虚数单位),若为纯虚数,则()A.B.2C.D.8.是恒成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件9.在中,内角的平分线交边于点,,,,则的面积是()A.B.C.D.10.已知,则()A.B.C.D.11.设是定义域为的偶函数,且在单调递增,,则()A.B.D.C.D.12.下列四个图象可能是函数图象的是()A.B.C.二、填空题:本题共4小题,每小题5分,共20分。13.若复数满足,其中是虚数单位,是的共轭复数,则________.14.设为数列的前项和,若,则____15.已知数列满足,,若,则数列的前n项和______.16.已知点是抛物线的准线上一点,F为抛物线的焦点,P为抛物线上的点,且,若双曲线C中心在原点,F是它的一个焦点,且过P点,当m取最小值时,双曲线C的离心率为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)的内角、、所对的边长分别为、、,已知.(1)求的值;(2)若,点是线段的中点,,求的面积.18.(12分)已知函数的最大值为,其中.(1)求实数的值;(2)若求证:.19.(12分)已知等差数列和等比数列满足:(I)求数列和的通项公式;(II)求数列的前项和.20.(12分)已知抛物线与直线.(1)求抛物线C上的点到直线l距离的最小值;(2)设点是直线l上的动点,是定点,过点P作抛物线C的两条切线,切点为A,B,求证A,Q,B共线;并在时求点P坐标.21.(12分)已知函数.(1)若不等式有解,求实数的取值范围;(2)函数的最小值为,若正实数,,满足,证明:.22.(10分)已知中,,,是上一点.(1)若,求的长;(2)若,,求的值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】不妨设在第一象限,故,根据得到,解得答案.【详解】不妨设在第一象限,故,,即,即,解得,(舍去).故选:.【点睛】本题考查了椭圆的离心率,意在考查学生的计算能力.2、C【解析】如图所示:切点为,连接,作轴于,计算,,,,根据勾股定理计算得到答案.轴于,【详解】如图所示:切点为,连接,作,故,在中,,故,故,,根据勾股定理:,解得.故选:.【点睛】本题考查了双曲线的渐近线斜率,意在考查学生的计算能力和综合应用能力.3、B【解析】利用复数的四则运算以及几何意义即可求解.【详解】解:,则复数(i是虚数单位)在复平面内对应的点的坐标为:,位于第二象限.故选:B.【点睛】本题考查了复数的四则运算以及复数的几何意义,属于基础题.4、A【解析】分别判断命题和的真假性,然后根据含有逻辑联结词命题的真假性判断出正确选项.【详解】对于命题,由于,所以命题为真命题.对于命题,由于,由解得,且,所以是奇函数,故为真命题.所以为真命题.、、都是假命题.故选:A【点睛】本小题主要考查诱导公式,考查函数的奇偶性,考查含有逻辑联结词命题真假性的判断,属于基础题.5、C【解析】分析:解决该题的关键是求得等比数列的公比,利用题中所给的条件,建立项之间的...