河北省南宫市第一中学2023-2024学年高考数学四模试卷注意事项铅笔作答;第二部分必须用黑1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知椭圆:的左、右焦点分别为,,过的直线与轴交于点,线段与交于点.若,则的方程为()A.B.C.D.2.已知点,若点在曲线上运动,则面积的最小值为()A.6B.3C.D.3.设全集为R,集合,,则C.D.A.B.4.设双曲线的左右焦点分别为,点.已知动点在双曲线的右支上,且点不共线.若的周长的最小值为,则双曲线的离心率的取值范围是()A.B.C.D.5.已知函数的最小正周期为的图象向左平移个单位长度后关于轴对称,则的单调递增区间为()A.B.C.D.6.赵爽是我国古代数学家、天文学家,大约公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,又称“赵爽弦图”(以弦为边长得到的正方形是由个全等的直角三角形再加上中间的一个小正方形组成的,如图(1)),类比“赵爽弦图”,可类似地构造如图(2)所示的图形,它是由个全等的三角形与中间的一个小正六边形组成的一个大正六边形,设,若在大正六边形中随机取一点,则此点取自小正六边形的概率为()A.B.C.D.7.若复数z满足,则()A.B.C.D.8.若直线经过抛物线的焦点,则()A.B.C.2D.9.在很多地铁的车厢里,顶部的扶手是一根漂亮的弯管,如下图所示.将弯管形状近似地看成是圆弧,已知弯管向外的最大突出(图中)有,跨接了6个坐位的宽度(),每个座位宽度为,估计弯管的长度,下面的结果中最接近真实值的是()A.B.C.D.10.已知复数z满足,则在复平面上对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限11.一物体作变速直线运动,其曲线如图所示,则该物体在间的运动路程为()m.A.1B.C.D.212.下列命题为真命题的个数是()(其中,为无理数)①;②;③.A.0B.1C.2D.3二、填空题:本题共4小题,每小题5分,共20分。13.已知函数的最小值为2,则_________.14.已知函数,若关于x的方程有且只有两个不相等的实数根,则实数a的取值范围是_______________.15.直线是曲线的一条切线为自然对数的底数),则实数__________.16.已知函数,则关于的不等式的解集为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)选修44:坐标系与参数方程在平面直角坐标系xOy中,已知曲线C的参数方程为(α为参数).以直角坐标系原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为,点P为曲线C上的动点,求点P到直线l距离的最大值.18.(12分)P是圆上的动点,P点在x轴上的射影是D,点M满足.(1)求动点M的轨迹C的方程,并说明轨迹是什么图形;(2)过点的直线l与动点M的轨迹C交于不同的两点A,B,求以OA,OB为邻边的平行四边形OAEB的顶点E的轨迹方程.19.(12分)已知.(1)已知关于的不等式有实数解,求的取值范围;(2)求不等式的解集.20.(12分)如图,焦点在轴上的椭圆与焦点在轴上的椭圆都过点,中心都在坐标原点,且椭圆与的离心率均为.(Ⅰ)求椭圆与椭圆的标准方程;的面积取最大值(Ⅱ)过点M的互相垂直的两直线分别与,交于点A,B(点A、B不同于点M),当时,求两直线MA,MB斜率的比值.21.(12分)已知中心在原点的椭圆的左焦点为,与轴正半轴交点为,且.时,直线(1)求椭圆的标准方程;(2)过点作斜率为、的两条直线分别交于异于点的两点、.证明:当过定点.22.(10分)已知函数.(Ⅰ)已知是的一个极值点,求曲线在处的切线方程(Ⅱ)讨论关于的方程根的个数.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由题可得,所以,又,所以,得,故可得椭圆的方程.,所以,【详解】由题可得又,所以,得,,所以椭圆的方程为.故选:D,结合...