河北省石家庄市一中、唐山一中等“五个一”名校2024年高三压轴卷数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,则的值等于()A.2018B.1009C.1010D.20202.在等腰直角三角形中,,为的中点,将它沿翻折,使点与点间的距离为,此时四面体的外接球的表面积为().A.B.C.D.3.复数,是虚数单位,则下列结论正确的是A.B.的共轭复数为C.的实部与虚部之和为1D.在复平面内的对应点位于第一象限4.已知椭圆(a>b>0)与双曲线(a>0,b>0)的焦点相同,则双曲线渐近线方程为()A.B.C.D.5.若直线的倾斜角为,则的值为()A.B.C.D.6.下图是民航部门统计的某年春运期间,六个城市售出的往返机票的平均价格(单位元),以及相比于上一年同期价格变化幅度的数据统计图,以下叙述不正确的是()A.深圳的变化幅度最小,北京的平均价格最高B.天津的往返机票平均价格变化最大C.上海和广州的往返机票平均价格基本相当D.相比于上一年同期,其中四个城市的往返机票平均价格在增加7.圆柱被一平面截去一部分所得几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.8.函数,,则“的图象关于轴对称”是“是奇函数”的(),则C为()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件9.已知双曲线C:1(a>0,b>0)的焦距为8,一条渐近线方程为A.B.C.D.10.已知圆:,圆:,点、分别是圆、圆上的动点,为轴上的动点,则的最大值是()A.B.9C.7D.11.已知是虚数单位,若,则()A.B.2C.D.10是偶函数;②12.命题“”的否定为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.若函数满足:①的图象关于点对称.则同时满足①②的,的一组值可以分别是__________.14.设是公差不为0的等差数列的前n项和,且,则______.15.曲线在处的切线方程是_________.16.双曲线的左右顶点为,以为直径作圆,为双曲线右支上不同于顶点的任一点,连接交圆于点,设直线的斜率分别为,若,则_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)数列满足,是与的等差中项.(1)证明:数列为等比数列,并求数列的通项公式;(2)求数列的前项和.18.(12分)如图,直角三角形所在的平面与半圆弧所在平面相交于,,,分别为,的中点,是上异于,的点,.(1)证明:平面平面;(2)若点为半圆弧上的一个三等分点(靠近点)求二面角的余弦值.19.(12分)某大学开学期间,该大学附近一家快餐店招聘外卖骑手,该快餐店提供了两种日工资结算方案:方案规定每日底薪100元,外卖业务每完成一单提成2元;方案规定每日底薪150元,外卖业务的前54单没有提成,从第55单开始,每完成一单提成5元.该快餐店记录了每天骑手的人均业务量,现随机抽取100天的数据,将样本数据分为七组,整理得到如图所示的频率分布直方图.(1)随机选取一天,估计这一天该快餐店的骑手的人均日外卖业务量不少于65单的概率;(2)从以往统计数据看,新聘骑手选择日工资方案的概率为,选择方案的概率为.若甲、乙、丙、丁四名骑手分别到该快餐店应聘,四人选择日工资方案相互独立,求至少有两名骑手选择方案的概率,(3)若仅从人日均收入的角度考虑,请你为新聘骑手做出日工资方案的选择,并说明理由.(同组中的每个数据用该组区间的中点值代替)20.(12分)在直角坐标系中,点的坐标为,直线的参数方程为(为参数,为常数,且).以直角坐标系的原点为极点,轴的正半轴为极轴,且两个坐标系取相等的长度单位,建立极坐标系,圆的极坐标方程为.设点在圆外.(1)求的取值范围.(2)设直线与圆相交于两点,若,求的值.21.(12分)已知函数(1)求函数的单调递增区间(...