河北省秦皇岛中学2024年高三第五次模拟考试数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,若,,,则a,b,c的大小关系是()A.B.C.D.2.设全集,集合,,则集合()A.B.C.D.3.设集合A={yy=2x﹣1,x∈R},B={x﹣2≤x≤3,x∈Z},则A∩B=()A.(﹣1,3]B.[﹣1,3]C.{0,1,2,3}D.{﹣1,0,1,2,3}4.是平面上的一定点,是平面上不共线的三点,动点满足,,则动点的轨迹一定经过的()A.重心B.垂心C.外心D.内心5.赵爽是我国古代数学家、天文学家,大约公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,又称“赵爽弦图”(以弦为边长得到的正方形是由个全等的直角三角形再加上中间的一个小正方形组成的,如图(1)),类比“赵爽弦图”,可类似地构造如图(2)所示的图形,它是由个全等的三角形与中间的一个小正六边形组成的一个大正六边形,设,若在大正六边形中随机取一点,则此点取自小正六边形的概率为()A.B.C.D.6.将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案种数是()A.18种B.36种C.54种D.72种7.如图是一个算法流程图,则输出的结果是()A.B.C.D.(为常数),则不等式8.设为定义在上的奇函数,当时,的解集为()A.B.C.D.9.已知复数满足(是虚数单位),则=()A.B.C.D.10.已知a,b是两条不同的直线,α,β是两个不同的平面,且,,则“”是“”的()B.必要不充分条件C.充要条件D.既不充分也不必要条件A.充分不必要条件11.在三角形中,,,求()A.B.C.D.12.等腰直角三角形的斜边AB为正四面体侧棱,直角边AE绕斜边AB旋转,则在旋转的过程中,有下列说法:(1)四面体EBCD的体积有最大值和最小值;(2)存在某个位置,使得;(3)设二面角的平面角为,则;(4)AE的中点M与AB的中点N连线交平面BCD于点P,则点P的轨迹为椭圆.其中,正确说法的个数是()A.1B.2C.3D.4二、填空题:本题共4小题,每小题5分,共20分。13.设,若关于的方程有实数解,则实数的取值范围_____.14.已知多项式的各项系数之和为32,则展开式中含项的系数为______.15.若曲线(其中常数)在点处的切线的斜率为1,则________.16.四边形中,,,,,则的最小值是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)求函数的单调区间;(2)若,证明.18.(12分)甲、乙、丙三名射击运动员射中目标的概率分别为,三人各射击一次,击中目标的次数记为.(1)求的分布列及数学期望;(2)在概率(=0,1,2,3)中,若的值最大,求实数的取值范围.19.(12分)已知函数的最大值为,其中.(1)求实数的值;(2)若求证:.20.(12分)我国在2018年社保又出新的好消息,之前流动就业人员跨地区就业后,社保转移接续的手续往往比较繁琐,费时费力.社保改革后将简化手续,深得流动就业人员的赞誉.某市社保局从2018年办理社保的人员中抽取300人,得到其办理手续所需时间(天)与人数的频数分布表:时间人数156090754515(1)若300名办理社保的人员中流动人员210人,非流动人员90人,若办理时间超过4天的人员里非流动人员有60人,请完成办理社保手续所需时间与是否流动人员的列联表,并判断是否有95%的把握认为“办理社保手续所需时间与是否流动人员”有关.列联表如下流动人员非流动人员总计办理社保手续所需时间不超过4天办理社保手续所需60时间超过4天总计21090300(2)为了改进工作作风,提高效率,从抽取的300人中办理时间为流动人员中利用分层抽样,抽取12名流动人员召开座谈会,其中3人要求交书面材料,3人中办理的时间为的人数为,求出分布列及期望值.附:0.100.050.0100...