河北省衡水十三2024届高三第二次模拟考试数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.一个盒子里有4个分别标有号码为1,2,3,4的小球,每次取出一个,记下它的标号后再放回盒子中,共取3次,则取得小球标号最大值是4的取法有()A.17种B.27种C.37种D.47种2.的展开式中的系数为()A.-30B.-40C.40D.503.函数(,,)的部分图象如图所示,则的值分别为()A.2,0B.2,C.2,D.2,4.设函数的定义域为,命题:,的否定是()A.,B.,C.,D.,5.已知在中,角的对边分别为,若函数存在极值,则角的取值范围是()A.B.C.D.6.一物体作变速直线运动,其曲线如图所示,则该物体在间的运动路程为()m.A.1B.C.D.27.波罗尼斯(古希腊数学家,的公元前262-190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽,几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数k(k>0,且k≠1)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.现有椭圆=1(a>b>0),A,B为椭圆的长轴端点,C,D为椭圆的短轴端点,动点M满足=2,△MAB面积的最大值为8,△MCD面积的最小值为D.1,则椭圆的离心率为()A.B.C.8.若,则,,,的大小关系为()A.C.B.D.9.已知函数,,则的极大值点为()A.B.C.D.10.设集合,,若,则的取值范围是()A.11.已知抛物线B.C.D.上一点到焦点的距离为,分别为抛物线与圆上的动点,则的最小值为()A.B.C.D.12.设i为数单位,为z的共轭复数,若,则()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列满足对任意,若,则数列的通项公式________.,在区间上随机取一个数,则使得≥0的概率为.14.已知函数15.已知椭圆的离心率是,若以为圆心且与椭圆有公共点的圆的最大半径为,此时椭圆的方程是____.16.已知二项式的展开式中的常数项为,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,底面是边长为2的菱形,,.(1)证明:平面平面ABCD;(2)设H在AC上,,若,求PH与平面PBC所成角的正弦值.18.(12分)已知函数有两个极值点,.(1)求实数的取值范围;(2)证明:.19.(12分)已知正数x,y,z满足xyzt(t为常数),且的最小值为,求实数t的值.20.(12分)已知集合,.(1)若,则;(2)若,求实数的取值范围.21.(12分)在四棱锥中,底面是平行四边形,为其中心,为锐角三角形,且平面底面,为的中点,.(1)求证:平面;(2)求证:.22.(10分)在直角坐标系中,已知圆,以原点为极点,x轴正半轴为极轴建立极坐标系,已知直线平分圆M的周长.(1)求圆M的半径和圆M的极坐标方程;(2)过原点作两条互相垂直的直线,其中与圆M交于O,A两点,与圆M交于O,B两点,求面积的最大值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由于是放回抽取,故每次的情况有4种,共有64种;先找到最大值不是4的情况,即三次取出标号均不为4的球的情况,进而求解.【详解】所有可能的情况有种,其中最大值不是4的情况有种,所以取得小球标号最大值是4的取法有种,故选:C【点睛】本题考查古典概型,考查补集思想的应用,属于基础题.2、C【解析】先写出的通项公式,再根据的产生过程,即可求得.【详解】对二项式,其通项公式为的展开式中的系数是展开式中的系数与的系数之和.令,可得的系数为;令,可得的系数为;故的展开式中的系数为.故选:C.【点睛】本题考查二项展开式中某一项系数的求解,关键是对通项公式的熟练使用,属基础题.3、D【解析】...