河北省邢台八中2024年高三六校第一次联考数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,且的图象经过第一、二、四象限,则,,的大小关系为()A.B.C.D.2.已知曲线且过定点,若且,则的最小值为().A.B.9C.5D.3.为研究语文成绩和英语成绩之间是否具有线性相关关系,统计两科成绩得到如图所示的散点图(两坐标轴单位长度相同),用回归直线近似地刻画其相关关系,根据图形,以下结论最有可能成立的是()A.线性相关关系较强,b的值为1.25B.线性相关关系较强,b的值为0.83C.线性相关关系较强,b的值为-0.87D.线性相关关系太弱,无研究价值4.已知向量,,若,则()A.5.函数B.C.-8D.8的图象向右平移个单位得到函数的图象,并且函数在区间上单调递增,在区间上单调递减,则实数的值为()A.B.C.2D.6.的二项展开式中,的系数是()A.707.函数B.-70C.28D.-28与的图象上存在关于直线对称的点,则的取值范围是()A.B.C.D.8.设等差数列的前项和为,若,,则()A.21B.22C.11D.129.在直角坐标系中,已知A(1,0),B(4,0),若直线x+my﹣1=0上存在点P,使得PA=2PB,则正实数m的最小值是()A.B.3C.D.10.已知正项数列满足:,设,当最小时,的值为()A.B.C.D.11.已知集合,定义集合,则等于()A.B.C.D.12.已知等比数列的前项和为,若,且公比为2,则与的关系正确的是()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数在定义域R上的导函数为,若函数没有零点,且,当在上与在R上的单调性相同时,则实数k的取值范围是______.中,14.已知“在”,类比以上正弦定理,“在三棱锥中,侧棱与平面所成的角为、与平面所成的角为,则________.15.若随机变量的分布列如表所示,则______,______.-10116.展开式中的系数为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的短轴长为,左右焦点分别为,,点是椭圆上位于第一象限的任一点,且当时,.(1)求椭圆的标准方程;(2)若椭圆上点与点关于原点对称,过点作垂直于轴,垂足为,连接并延长交于另一点,交轴于点.(ⅰ)求面积最大值;(ⅱ)证明:直线与斜率之积为定值.18.(12分)已知.(1)若,求函数的单调区间;(2)若不等式恒成立,求实数的取值范围.19.(12分)已知函数,.(1)若对于任意实数,恒成立,求实数的范围;(2)当时,是否存在实数,使曲线:在点处的切线与轴垂直?若存在,求出的值;若不存在,说明理由.中,平面平面,,,,均20.(12分)如图,在斜三棱柱为正三角形,E为AB的中点.(Ⅰ)证明:平面;(Ⅱ)求斜三棱柱截去三棱锥后剩余部分的体积.21.(12分)在直角坐标系xOy中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系;曲线C1的普通方程为(x-1)2+y2=1,曲线C2的参数方程为(θ为参数).(Ⅰ)求曲线C1和C2的极坐标方程:(Ⅱ)设射线θ=(ρ>0)分别与曲线C1和C2相交于A,B两点,求AB的值.22.(10分)己知,,.(1)求证:;(2)若,求证:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据题意,得,,则为减函数,从而得出函数的单调性,可比较和,而,比较,即可比较.【详解】,且的图象经过第一、二、四象限,因为所以,,所以函数为减函数,函数在上单调递减,在上单调递增,又因为,所以,又,,则,即,所以.故选:C.【点睛】本题考查利用函数的单调性比较大小,还考查化简能力和转化思想.2、A【解析】根据指数型函数所过的定点,确定,再根据条件,利用基本不等式求的最小值.【详解】定点为,,当且仅当...