河北衡中清大教育集团2024年高三第一次调研测试数学试卷注意事项铅笔作答;第二部分必须用黑1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.直三棱柱中,,,则直线与所成的角的余弦值为()A.B.C.D.2.如图,正方体中,,,,分别为棱、、、的中点,则下列各直线中,不与平面平行的是()A.直线B.直线C.直线D.直线3.若集合,A.,则下列结论正确的是()4.在三棱锥B.)中,C.D.A.,,则三棱锥外接球的表面积是(B.C.D.5.设非零向量,,,满足,,且与的夹角为,则“”是“”的().A.充分非必要条件B.必要非充分条件C.充分必要条件D.既不充分也不必要条件6.若复数z满足,则()A.B.C.D.7.设不等式组,表示的平面区域为,在区域内任取一点,则点的坐标满足不等式的概率为A.B.C.D.8.已知中内角所对应的边依次为,若,则的面积为()A.B.C.D.9.如图,在中,,是上一点,若,则实数的值为()A.B.C.D.10.已知空间两不同直线、,两不同平面,,下列命题正确的是()A.若且,则B.若且,则C.若且,则D.若不垂直于,且,则不垂直于11.在区间上随机取一个实数,使直线与圆相交的概率为()A.B.C.D.12.已知双曲线的实轴长为,离心率为,、分别为双曲线的左、右焦点,点在双曲线上运动,若为锐角三角形,则的取值范围是()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.甲、乙、丙、丁4名大学生参加两个企业的实习,每个企业两人,则“甲、乙两人恰好在同一企业”的概率为_________.14.已知函数,若在定义域内恒有,则实数的取值范围是__________.15.已知集合,,则________.,且16.某种产品的质量指标值服从正态分布.某用户购买了件这种产品,则这件产品中质量指标值位于区间之外的产品件数为_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的离心率为,点在椭圆上.(Ⅰ)求椭圆的标准方程;(Ⅱ)设直线交椭圆于两点,线段的中点在直线上,求证:线段的中垂线恒过定点.18.(12分)已知三棱锥中侧面与底面都是边长为2的等边三角形,且面面,分别为线段的中点.为线段上的点,且.(1)证明:为线段的中点;(2)求二面角的余弦值.19.(12分)在平面直角坐标系中,为直线上动点,过点作抛物线:的两条切线,,切点分别为,,为的中点.(1)证明:轴;(2)直线是否恒过定点?若是,求出这个定点的坐标;若不是,请说明理由.20.(12分)已知数列为公差不为零的等差数列,是数列的前项和,且、、成等比数列,.设数列的前项和为,且满足.(1)求数列、的通项公式;(2)令,证明:.21.(12分)如图,在三棱柱中,平面平面,侧面为平行四边形,侧面为正方形,,,为的中点.(1)求证:平面;(2)求二面角的大小.22.(10分)班主任为了对本班学生的考试成绩进行分析,决定从本班24名女同学,18名男同学中随机抽取一个容量为7的样本进行分析.(1)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可,不必计算出结果)(2)如果随机抽取的7名同学的数学,物理成绩(单位:分)对应如下表:学生序号1234567数学成绩60657075858790物理成绩70778085908693①若规定85分以上(包括85分)为优秀,从这7名同学中抽取3名同学,记3名同学中数学和物理成绩均为优秀的人数为,求的分布列和数学期望;②根据上表数据,求物理成绩关于数学成绩的线性回归方程(系数精确到0.01);若班上某位同学的数学成绩为96分,预测该同学的物理成绩为多少分?附:线性回归方程,其中,.7683812526参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】设,延长至,使得,连,可证,得到(或补角)为所求的角,分别求出,解即可.至,使得...