电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

河北邯郸2023-2024学年高考数学三模试卷含解析.doc

河北邯郸2023-2024学年高考数学三模试卷含解析.doc_第1页
1/26
河北邯郸2023-2024学年高考数学三模试卷含解析.doc_第2页
2/26
河北邯郸2023-2024学年高考数学三模试卷含解析.doc_第3页
3/26
河北邯郸2023-2024学年高考数学三模试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线与双曲线没有公共点,则双曲线的离心率的取值范围是()A.B.C.D.2.函数()的图象的大致形状是()A.B.C.D.3.若函数的图象经过点,则函数图象的一条对称轴的方程可以为()A.B.C.D.4.已知函数,则()A.B.C.D.与抛物线相交于A,B两点,且A、B两点在抛物线准线上的投5.如图,已知直线,则的值是()影分别是M,N,若A.B.C.D.6.已知实数,则的大小关系是()A.B.C.D.7.记为数列的前项和数列对任意的满足.若,则当取最小值,记,PO,时,等于()B.7C.8D.9A.68.已知P是双曲线渐近线上一点,,是双曲线的左、右焦点,的斜率为,k,,若,-2k,成等差数列,则此双曲线的离心率为()A.B.C.D.9.执行如图的程序框图,若输出的结果,则输入的值为()A.B.C.3或D.或10.已知双曲线的左、右焦点分别为,,P是双曲线E上的一点,且.若直线与双曲线E的渐近线交于点M,且M为的中点,则双曲线E的渐近线方程为()A.B.C.D.11.某几何体的三视图如图所示(单位:cm),则该几何体的体积等于()cm3A.B.C.D.12.设,命题“存在,使方程有实根”的否定是()A.任意,使方程无实根B.任意,使方程有实根C.存在,使方程无实根D.存在,使方程有实根二、填空题:本题共4小题,每小题5分,共20分。13.若直线与直线交于点,则长度的最大值为____.14.某高中共有1800人,其中高一、高二、高三年级的人数依次成等差数列,现用分层抽样的方法从中抽取60人,那么高二年级被抽取的人数为________.15.已知数列满足:,,若对任意的正整数均有,则实数的最大值是_____.16.图(1)是第七届国际数学教育大会(ICME-7)的会徽图案,它是由一串直角三角形演化而成的(如图(2)),其中,则的值是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在四棱锥中,底面为直角梯形,,面.(1)在线段上是否存在点,使面,说明理由;(2)求二面角的余弦值.18.(12分)已知圆M:及定点,点A是圆M上的动点,点B在上,点G在上,且满足,,点G的轨迹为曲线C.(1)求曲线C的方程;(2)设斜率为k的动直线l与曲线C有且只有一个公共点,与直线和分别交于P、Q两点.当时,求(O为坐标原点)面积的取值范围.19.(12分)在世界读书日期间,某地区调查组对居民阅读情况进行了调查,获得了一个容量为200的样本,其中城镇居民140人,农村居民60人.在这些居民中,经常阅读的城镇居民有100人,农村居民有30人.(1)填写下面列联表,并判断能否有99%的把握认为经常阅读与居民居住地有关?城镇居民农村居民合计经常阅读10030不经常阅读合计200(2)从该地区城镇居民中,随机抽取5位居民参加一次阅读交流活动,记这5位居民中经常阅读的人数为,若用样本的频率作为概率,求随机变量的期望.附:,其中.0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82820.(12分)已知函数(1)若函数在处取得极值1,证明:(2)若恒成立,求实数的取值范围.21.(12分)[选修4-4:极坐标与参数方程]在直角坐标系中,曲线的参数方程为(是参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的极坐标方程和曲线的直角坐标方程;(2)若射线与曲线交于,两点,与曲线交于,两点,求取最大值时的值22.(10分)已知函数.的解集;(1)若,求不等式”为假命题,求的取值范围.(2)若“,参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】先求得的渐近线方程,根据没有公共点,判断...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

河北邯郸2023-2024学年高考数学三模试卷含解析.doc

您可能关注的文档

确认删除?