河南周口市中英文学校2023-2024学年高考仿真模拟数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图所示,网络纸上小正方形的边长为1,粗线画出的是某四棱锥的三视图,则该几何体的体积为()A.2B.C.6D.82.已知函数,,若对任意的,存在实数满足,使得,则的最大值是()A.3B.2C.4D.5的一个焦点且与其中一条渐近线平行,则双曲线的方3.已知直线:过双曲线D.程为(),则不可能为()A.B.C.D.4.设复数满足,在复平面内对应的点为A.B.C.5.设递增的等比数列的前n项和为,已知,,则()A.9B.27C.81D.6.已知函数,方程有四个不同的根,记最大的根的所有取值为集合,则“函数有两个零点”是“”的().A.充分不必要条件B.必要不充分条件,不等式C.充要条件D.既不充分也不必要条件7.已知数列中,,若对于任意的恒成立,则实数的取值范围为()A.B.C.D.8.正项等比数列中的、是函数的极值点,则()A.B.1C.D.2(其中9.已知定义在上的奇函数满足:),且在区间上是减函数,令,,,则,,的大小关系(用不等号连接)为()A.B.C.D.10.已知向量,,且与的夹角为,则x=()A.-2B.2C.1D.-111.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数(即质数)的和”,如,.在不超过20的素数中,随机选取两个不同的数,其和等于20的概率是()A.B.C.D.以上都不对12.已知函数是奇函数,则的值为()A.-10B.-9C.-7D.1二、填空题:本题共4小题,每小题5分,共20分。13.已知是同一球面上的四个点,其中平面,是正三角形,,则该,球的表面积为______.14.以,为圆心的两圆均过,与轴正半轴分别交于,,且满足则点的轨迹方程为_________.15.已知,,,则的最小值是__.16.将底面直径为4,高为的圆锥形石块打磨成一个圆柱,则该圆柱的侧面积的最大值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在平面直角坐标系xOy中,已知椭圆的离心率为,以椭圆C左顶点T为圆心作圆,设圆T与椭圆C交于点M与点N.(1)求椭圆C的方程;(2)求的最小值,并求此时圆T的方程;(3)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别与x轴交于点R,S,O为坐标原点,求证:为定值.18.(12分)已知二阶矩阵,矩阵属于特征值的一个特征向量为,属于特征值的一个特征向量为.求矩阵.19.(12分)在三角形中,角,,的对边分别为,,,若.(Ⅰ)求角;(Ⅱ)若,,求.20.(12分)设函数,,.(1)求函数的单调区间;(2)若函数有两个零点,().(i)求的取值范围;(ii)求证:随着的增大而增大.21.(12分)已知椭圆,点,点满足(其中为坐标原点),点在椭圆上.与椭圆交于两点.且与圆(1)求椭圆的标准方程;(2)设椭圆的右焦点为,若不经过点的直线相切.的周长是否为定值?若是,求出定值;若不是,请说明理由.22.(10分)已知数列满足:对任意,都有.(1)若,求的值;(2)若是等比数列,求的通项公式;(3)设,,求证:若成等差数列,则也成等差数列.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】先由三视图确定该四棱锥的底面形状,以及四棱锥的高,再由体积公式...