河南师范大学附属中学 2024 届高三考前热身数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.数列满足:,则数列前项的和为A.B.C.D.2.甲、乙、丙三人参加某公司的面试,最终只有一人能够被该公司录用,得到面试结果以后甲说:丙被录用了;乙说:甲被录用了;丙说:我没被录用.若这三人中仅有一人说法错误,则下列结论正确的是( )A.丙被录用了B.乙被录用了C.甲被录用了D.无法确定谁被录用了3.已知点是抛物线:的焦点,点为抛物线的对称轴与其准线的交点,过作抛物线的切线,切点为,若点恰好在以,为焦点的双曲线上,则双曲线的离心率为( )A.B.C.D.4.已知函数,若关于的方程恰好有 3 个不相等的实数根,则实数的取值范围为( )A.B.C.D.5.设函数若关于的方程有四个实数解,其中,则的取值范围是( )A.B.C.D.6.已知集合,,且、都是全集(为实数集)的子集,则如图所示韦恩图中阴影部分所表示的集合为( )A.B.或C.D.7.四人并排坐在连号的四个座位上,其中与不相邻的所有不同的坐法种数是( )A.12B.16C.20D.88.在棱长均相等的正三棱柱中,为的中点,在上,且,则下述结论:①;②;③平面平面:④异面直线与所成角为其中正确命题的个数为( )A.1B.2C.3D.49.已知集合,集合,则( ).A.B.C.D.10.如图,平面四边形中,,,,,现将沿翻折,使点移动至点,且,则三棱锥的外接球的表面积为( )A.B.C.D.11.在等差数列中,,,若(),则数列的最大值是( )A.B.C.1D.312.已知函数是偶函数,当时,函数单调递减,设,,,则的大小关系为()A.B.C.D.二、填空题:本题共 4 小题,每小题 5 分,共 20 分。13.已知,椭圆的方程为,双曲线方程为,与的离心率之积为,则的渐近线方程为________.14.设函数,若对于任意的,∈[2,,≠,不等式恒成立,则实数a 的取值范围是 .15.圆关于直线的对称圆的方程为_____.16.若非零向量,满足,,,则______.三、解答题:共 70 分。解答应写出文字说明、证明过程或演算步骤。17.(12 分)已知函数.(1)当时,求不等式的解集;(2)若对任意成立,求实数的取值范围.18.(12 分)班主任为了对本班学生的考试成绩进行分析,决定从本班 24 名女同学,18 名男同学中随机抽取一个容量为 7 的样本进行分析.(1)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可,不必计算出结果)(2)如果随机抽取的 7 名同学的数学,物理成绩(单位:分)对应如下表:学生序号1234567数学成绩60657075858790物理成绩70778085908693① 若规定 85 分以上(包括 85 分)为优秀,从这 7 名同学中抽取 3 名同学,记 3 名同学中数学和物理成绩均为优秀的人数为,求的分布列和数学期望;② 根据上表数据,求物理成绩关于数学成绩的线性回归方程(系数精确到 0.01);若班上某位同学的数学成绩为96 分,预测该同学的物理成绩为多少分?附:线性回归方程,其中,.768381252619.(12 分)已知函数有两个零点.(1)求的取值范围;(2)是否存在实数, 对于符合题意的任意,当 时均有?若存在,求出所有的值;若不存在,请说明理由.20.(12 分)某校为了解校园安全教育系列活动的成效,对全校学生进行一次安全意识测试,根据测试成绩评定“合格”、“不合格”两个等级,同时对相应等级进行量化:“合格”记分,“不合格”记分.现随机抽取部分学生的成绩,统计结果及对应的频率分布直方图如下所示:等级不合格合格得分频数624(Ⅰ)若测试的同学中,分数段内女生的人数分别为,完成列联表,并判断:是否有以上的把握认为性别与安全意识有关? 是否合格 性...