河南省安阳市林州市林滤中学2024年高三下学期联合考试数学试题注意事项铅笔作答;第二部分必须用黑1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.阅读名著,品味人生,是中华民族的优良传统.学生李华计划在高一年级每周星期一至星期五的每天阅读半个小时中国四大名著:《红楼梦》、《三国演义》、《水浒传》及《西游记》,其中每天阅读一种,每种至少阅读一次,则每周不同的阅读计划共有()A.120种B.240种C.480种D.600种2.已知函数,则在上不单调的一个充分不必要条件可以是()A.B.C.或D.3.已知函数,关于的方程R)有四个相异的实数根,则的取值范围是()D.A.B.C.4.已知数列中,,且当为奇数时,;当为偶数时,.则此数列的前项的和为()A.B.C.D.5.某个命题与自然数有关,且已证得“假设时该命题成立,则时该命题也成立”.现已知当时,该命题不成立,那么()A.当时,该命题不成立B.当时,该命题成立D.当时,该命题成立C.当时,该命题不成立6.已知椭圆的左、右焦点分别为、,过的直线交椭圆于A,B两点,交y轴于点M,若、M是线段AB的三等分点,则椭圆的离心率为()A.B.C.D.7.已知命题p:“”是“”的充要条件;,,则()A.为真命题B.为真命题C.为真命题D.为假命题8.从5名学生中选出4名分别参加数学,物理,化学,生物四科竞赛,其中甲不能参加生物竞赛,则不同的参赛方案种数为B.72C.90D.96A.489.已知函数,则()A.2B.3C.4D.510.已知函数,,且,则()A.3B.3或7C.5D.5或811.将函数的图像向左平移个单位长度后,得到的图像关于坐标原点对称,则的最小值为()A.B.C.D.12.已知抛物线:,点为上一点,过点作轴于点,又知点,则的最小值为()A.B.C.3D.5二、填空题:本题共4小题,每小题5分,共20分。13.已知函数的定义域为R,导函数为,若,且,则满足的x的取值范围为______.14.在平面直角坐标系xOy中,若圆C1:x2+(y-1)2=r2(r>0)上存在点P,且点P关于直线x-y=0的对称点Q在圆C2:(x-2)2+(y-1)2=1上,则r的取值范围是________.15.若,则__________.16.已知点为双曲线的右焦点,两点在双曲线上,且关于原点对称,若,设,且,则该双曲线的焦距的取值范围是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,已知直线(为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的直角坐标方程;(2)设点的极坐标为,直线与曲线的交点为,求的值.18.(12分)已知椭圆的焦距为,斜率为的直线与椭圆交于两点,若线段的中点为,且直线的斜率为.(1)求椭圆的方程;(2)若过左焦点斜率为的直线与椭圆交于点为椭圆上一点,且满足,问:.是否为定值?若是,求出此定值,若不是,说明理由.19.(12分)已知数列中,a1=1,其前n项和为,且满足(1)求数列的通项公式;为递增数列,求λ的取值范围.(2)记,若数列20.(12分)已知函数(1)当时,若恒成立,求的最大值;(2)记的解集为集合A,若,求实数的取值范围.21.(12分)自湖北武汉爆发新型冠状病毒惑染的肺炎疫情以来,武汉医护人员和医疗、生活物资严重缺乏,全国各地纷纷驰援.截至1月30日12时,湖北省累计接收捐赠物资615.43万件,包括医用防护服2.6万套N95口軍47.9万个,医用一次性口罩172.87万个,护目镜3.93万个等.中某运输队接到给武汉运送物资的任务,该运输队有8辆载重为6t的A型卡车,6辆载重为10t的B型卡车,10名驾驶员,要求此运输队每天至少运送720t物资.已知每辆卡车每天往返的次数:A型卡车16次,B型卡车12次;每辆卡车每天往返的成本:A型卡车240元,B型卡车378元.求每天派出A型卡车与B型卡车各多少辆,运输队所花的成本最低?22.(10分)已知抛物线C:x24py(p为大...