河南省新乡一中等四校2024年高三下学期第六次检测数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列为等差数列,且,则的值为()A.B.C.D.2.设为坐标原点,是以为焦点的抛物线上任意一点,是线段上的点,且,则直线的斜率的最大值为()A.B.C.D.13.在区间上随机取一个数,使直线与圆相交的概率为()A.B.C.D.4.已知抛物线的焦点为,准线为,是上一点,是直线与抛物线的一个交点,若,则()A.B.3C.D.25.已知函数,.若存在,使得成立,则的最大值为()A.B.C.D.6.已知集合,,,则()A.B.C.D.7.已知变量x,y间存在线性相关关系,其数据如下表,回归直线方程为,则表中数据m的值为()0123变量xB.0.8535.57变量yA.0.9C.0.75D.0.58.函数的一个单调递增区间是()A.B.C.D.9.盒子中有编号为1,2,3,4,5,6,7的7个相同的球,从中任取3个编号不同的球,则取的3个球的编号的中位数恰好为5的概率是()A.B.C.D.10.设是等差数列,且公差不为零,其前项和为.则“,”是“为递增数列”的(,若F到直线)B.必要而不充分条件A.充分而不必要条件D.既不充分也不必要条件C.充分必要条件11.在平面直角坐标系xOy中,已知椭圆的右焦点为的距离为,则E的离心率为()A.B.C.D.12.设命题:,,则为A.,B.,C.,D.,二、填空题:本题共4小题,每小题5分,共20分。13.函数的值域为_____.14.设,满足约束条件,若目标函数的最大值为,则的最小值为______.15.某高校组织学生辩论赛,六位评委为选手成绩打出分数的茎叶图如图所示,若去掉一个最高分,去掉一个最低分,则所剩数据的平均数与中位数的差为______.16.设第一象限内的点(x,y)满足约束条件,若目标函数z=ax+by(a>0,b>0)的最大值为40,则+的最小值为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,函数.(1)若函数在上为减函数,求实数的取值范围;(2)求证:对上的任意两个实数,,总有成立.18.(12分)班主任为了对本班学生的考试成绩进行分析,决定从本班24名女同学,18名男同学中随机抽取一个容量为7的样本进行分析.(1)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可,不必计算出结果)(2)如果随机抽取的7名同学的数学,物理成绩(单位:分)对应如下表:学生序号1234567数学成绩60657075858790物理成绩70778085908693①若规定85分以上(包括85分)为优秀,从这7名同学中抽取3名同学,记3名同学中数学和物理成绩均为优秀的人数为,求的分布列和数学期望;②根据上表数据,求物理成绩关于数学成绩的线性回归方程(系数精确到0.01);若班上某位同学的数学成绩为96分,预测该同学的物理成绩为多少分?附:线性回归方程,其中,.768381252619.(12分)的内角所对的边分别是,且,.(1)求;(2)若边上的中线,求的面积.20.(12分)等差数列的公差为2,分别等于等比数列的第2项,第3项,第4项.(1)求数列和的通项公式;,求数列的前2020项的和.(2)若数列满足21.(12分)在中,角,,的对边分别为,其中,.(1)求角的值;(2)若,,为边上的任意一点,求的最小值.22.(10分)在底面为菱形的四棱柱中,平面.(1)证明:平面;(2)求二面角的正弦值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在...