河南省洛阳市栾川县实验高中2024届高考数学倒计时模拟卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,在中,点,分别为,的中点,若,,且满足,则等于()A.2B.C.D.2.已知集合,则的值域为()A.B.C.D.3.已知,则p是q的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.是抛物线上一点,是圆关于直线的对称圆上的一点,则最小值是()A.B.C.D.5.若x,y满足约束条件的取值范围是A.[0,6]B.[0,4]C.[6,D.[4,6.已知A.,,且是的充分不必要条件,则的取值范围是()7.若函数B.C.D.的定义域为M={x-2≤x≤2},值域为N={y0≤y≤2},则函数的图像可能是()A.B.C.D.8.若点位于由曲线与围成的封闭区域内(包括边界),则的取值范围是()A.B.C.D.9.如图是一个几何体的三视图,则该几何体的体积为()A.B.C.D.10.某几何体的三视图如图所示,三视图是腰长为1的等腰直角三角形和边长为1的正方形,则该几何体中最长的棱长为().A.B.C.1D.11.的图象如图所示,,若将的图象向左平移个单位长度后所得图象与的图象重合,则可取的值的是()A.B.C.D.12.已知角的顶点与坐标原点重合,始边与轴的非负半轴重合,它的终边过点,则的值为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.曲线f(x)=(x2+x)lnx在点(1,f(1))处的切线方程为____.14.在平面直角坐标系中,已知点,,若圆上有且仅有一对点,使得的面积是的面积的2倍,则的值为_______.15.若且时,不等式恒成立,则实数a的取值范围为________.16.已知圆,直线与圆交于两点,,若,则弦的长度的最大值为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数()(1)函数在点处的切线方程为,求函数的极值;(2)当时,对于任意,当时,不等式恒成立,求出实数的取值范围.18.(12分)已知如图1,在Rt△ABC中,∠ACB=30°,∠ABC=90°,D为AC中点,AEBD于E,延长AE交BC于F,将△ABD沿BD折起,使平面ABD平面BCD,如图2所示。(Ⅰ)求证:AE平面BCD;(Ⅱ)求二面角A-DC-B的余弦值;(Ⅲ)求三棱锥B-AEF与四棱锥A-FEDC的体积的比(只需写出结果,不要求过程).19.(12分)已知函数的导函数的两个零点为和.(1)求的单调区间;(2)若的极小值为,求在区间上的最大值.20.(12分)在平面四边形(图①)中,与均为直角三角形且有公共斜边,设,∠,∠,将沿折起,构成如图②所示的三棱锥,且使=.(1)求证:平面⊥平面;(2)求二面角的余弦值.21.(12分)已知函数.(1)解不等式;(2)使得,求实数的取值范围.22.(10分)如图1,在等腰梯形中,两腰,底边,,,是的三等分点,是的中点.分别沿,将四边形和折起,使,重合于点,得到如图2所示的几何体.在图2中,,分别为,的中点.(1)证明:平面.所成角的正弦值.(2)求直线与平面参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】选取为基底,其他向量都用基底表示后进行运算.【详解】的重心,由题意是∴,,,∴,故选:D.【点睛】本题考查向量的数量积,解题关键是选取两个不共线向量作为基底,其他向量都用基底表示参与运算,这样做目标明确,易于操作.2、A【解析】先求出集合,化简=,令,得由二次函数的性质即可得值域.【详解】由,得,,令,,,所以得,在上递增,在上递减,,所以,即的值域为故选A【点睛】本题考查了二次不等式的解法、二次函数最值的求法,换元法要注意新变量的范围,属于中档题3、B【解析】根据诱导公式化简再分析即可.【详解】,所以q成立可以推出p...